Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.675

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,1,3,-1,1,1,3,4,1,0,1,1,0,1,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.675']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+59t^5+48t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.675']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 736*K1**4*K2 - 1344*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 - 320*K1**2*K2**4 + 1280*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 5920*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 6160*K1**2*K2 - 192*K1**2*K3**2 - 3640*K1**2 + 1120*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 192*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4744*K1*K2*K3 + 368*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1456*K2**4 - 608*K2**2*K3**2 - 16*K2**2*K4**2 + 1080*K2**2*K4 - 2158*K2**2 + 312*K2*K3*K5 + 8*K2*K4*K6 - 1116*K3**2 - 280*K4**2 - 52*K5**2 - 2*K6**2 + 2822
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.675']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11595', 'vk6.11606', 'vk6.11946', 'vk6.11959', 'vk6.12941', 'vk6.12952', 'vk6.13252', 'vk6.20422', 'vk6.20432', 'vk6.21789', 'vk6.27778', 'vk6.27800', 'vk6.29300', 'vk6.31390', 'vk6.31409', 'vk6.32568', 'vk6.32587', 'vk6.32952', 'vk6.39202', 'vk6.39228', 'vk6.41426', 'vk6.47553', 'vk6.53194', 'vk6.53201', 'vk6.53507', 'vk6.57291', 'vk6.57293', 'vk6.61965', 'vk6.61971', 'vk6.64287', 'vk6.64290', 'vk6.64497']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U1U2O6U5U6U4
R3 orbit {'O1O2O3O4U3O5U1U2O6U5U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U6O5U3U4O6U2
Gauss code of K* O1O2O3U4U5U6U3O6U1O4O5U2
Gauss code of -K* O1O2O3U2O4O5U3O6U1U6U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 -1 3 1 1],[ 3 0 1 0 4 2 1],[ 1 -1 0 0 3 1 1],[ 1 0 0 0 1 0 0],[-3 -4 -3 -1 0 -1 1],[-1 -2 -1 0 1 0 1],[-1 -1 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 3 1 1 -1 -1 -3],[-3 0 1 -1 -1 -3 -4],[-1 -1 0 -1 0 -1 -1],[-1 1 1 0 0 -1 -2],[ 1 1 0 0 0 0 0],[ 1 3 1 1 0 0 -1],[ 3 4 1 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,1,3,-1,1,1,3,4,1,0,1,1,0,1,2,0,0,1]
Phi over symmetry [-3,-1,-1,1,1,3,-1,1,1,3,4,1,0,1,1,0,1,2,0,0,1]
Phi of -K [-3,-1,-1,1,1,3,1,2,2,3,2,0,1,1,1,2,2,3,-1,1,3]
Phi of K* [-3,-1,-1,1,1,3,1,3,1,3,2,1,1,2,2,1,2,3,0,1,2]
Phi of -K* [-3,-1,-1,1,1,3,0,1,1,2,4,0,0,0,1,1,1,3,-1,-1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+37t^4+12t^2
Outer characteristic polynomial t^7+59t^5+48t^3+4t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -384*K1**4*K2**2 + 736*K1**4*K2 - 1344*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 - 320*K1**2*K2**4 + 1280*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 5920*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 6160*K1**2*K2 - 192*K1**2*K3**2 - 3640*K1**2 + 1120*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 192*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4744*K1*K2*K3 + 368*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1456*K2**4 - 608*K2**2*K3**2 - 16*K2**2*K4**2 + 1080*K2**2*K4 - 2158*K2**2 + 312*K2*K3*K5 + 8*K2*K4*K6 - 1116*K3**2 - 280*K4**2 - 52*K5**2 - 2*K6**2 + 2822
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}]]
If K is slice True
Contact