Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.680

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,1,3,0,0,1,3,4,0,0,0,1,0,1,1,0,0,2]
Flat knots (up to 7 crossings) with same phi are :['6.680']
Arrow polynomial of the knot is: -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.546', '6.591', '6.598', '6.666', '6.680', '6.742', '6.778', '6.805', '6.822', '6.824', '6.1129', '6.1512', '6.1647', '6.1678', '6.1705', '6.1847', '6.1857']
Outer characteristic polynomial of the knot is: t^7+55t^5+54t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.680']
2-strand cable arrow polynomial of the knot is: -384*K1**6 - 256*K1**4*K2**2 + 1376*K1**4*K2 - 3424*K1**4 + 608*K1**3*K2*K3 + 32*K1**3*K3*K4 - 640*K1**3*K3 - 3536*K1**2*K2**2 - 384*K1**2*K2*K4 + 7112*K1**2*K2 - 704*K1**2*K3**2 - 144*K1**2*K4**2 - 3952*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5192*K1*K2*K3 + 1472*K1*K3*K4 + 304*K1*K4*K5 + 8*K1*K5*K6 - 144*K2**4 - 80*K2**2*K3**2 - 16*K2**2*K4**2 + 736*K2**2*K4 - 3692*K2**2 + 208*K2*K3*K5 + 16*K2*K4*K6 + 8*K3**2*K6 - 1912*K3**2 - 764*K4**2 - 168*K5**2 - 12*K6**2 + 3874
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.680']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10962', 'vk6.10966', 'vk6.10995', 'vk6.10999', 'vk6.12132', 'vk6.12136', 'vk6.12165', 'vk6.12169', 'vk6.13786', 'vk6.13802', 'vk6.14213', 'vk6.14217', 'vk6.14660', 'vk6.14664', 'vk6.14857', 'vk6.14873', 'vk6.15820', 'vk6.15824', 'vk6.31836', 'vk6.31840', 'vk6.33616', 'vk6.33632', 'vk6.33649', 'vk6.33665', 'vk6.51792', 'vk6.51796', 'vk6.52657', 'vk6.52661', 'vk6.53812', 'vk6.53828', 'vk6.54231', 'vk6.54235']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U1U5O6U2U6U4
R3 orbit {'O1O2O3O4U3O5U1U5O6U2U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U3O5U6U4O6U2
Gauss code of K* O1O2O3U4U1U5U3O5U6O4O6U2
Gauss code of -K* O1O2O3U2O4O5U4O6U1U6U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 -1 3 1 1],[ 3 0 2 0 4 1 1],[ 1 -2 0 0 3 0 1],[ 1 0 0 0 1 0 0],[-3 -4 -3 -1 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 3 1 1 -1 -1 -3],[-3 0 0 0 -1 -3 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 1 1 0 0 0 0 0],[ 1 3 0 1 0 0 -2],[ 3 4 1 1 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,1,3,0,0,1,3,4,0,0,0,1,0,1,1,0,0,2]
Phi over symmetry [-3,-1,-1,1,1,3,0,0,1,3,4,0,0,0,1,0,1,1,0,0,2]
Phi of -K [-3,-1,-1,1,1,3,0,2,3,3,2,0,1,2,1,2,2,3,0,2,2]
Phi of K* [-3,-1,-1,1,1,3,2,2,1,3,2,0,1,2,3,2,2,3,0,0,2]
Phi of -K* [-3,-1,-1,1,1,3,0,2,1,1,4,0,0,0,1,0,1,3,0,0,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+33t^4+18t^2+1
Outer characteristic polynomial t^7+55t^5+54t^3+5t
Flat arrow polynomial -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
2-strand cable arrow polynomial -384*K1**6 - 256*K1**4*K2**2 + 1376*K1**4*K2 - 3424*K1**4 + 608*K1**3*K2*K3 + 32*K1**3*K3*K4 - 640*K1**3*K3 - 3536*K1**2*K2**2 - 384*K1**2*K2*K4 + 7112*K1**2*K2 - 704*K1**2*K3**2 - 144*K1**2*K4**2 - 3952*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5192*K1*K2*K3 + 1472*K1*K3*K4 + 304*K1*K4*K5 + 8*K1*K5*K6 - 144*K2**4 - 80*K2**2*K3**2 - 16*K2**2*K4**2 + 736*K2**2*K4 - 3692*K2**2 + 208*K2*K3*K5 + 16*K2*K4*K6 + 8*K3**2*K6 - 1912*K3**2 - 764*K4**2 - 168*K5**2 - 12*K6**2 + 3874
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}]]
If K is slice True
Contact