| Gauss code |
O1O2O3O4U3O5U2U1O6U4U6U5 |
| R3 orbit |
{'O1O2O3O4U3O5U2U1O6U4U6U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U6U1O6U4U3O5U2 |
| Gauss code of K* |
O1O2O3U4U5U6U1O6U3O5O4U2 |
| Gauss code of -K* |
O1O2O3U2O4O5U1O6U3U6U5U4 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -2 -1 1 3 1],[ 2 0 0 0 3 3 1],[ 2 0 0 0 2 2 1],[ 1 0 0 0 1 1 1],[-1 -3 -2 -1 0 2 1],[-3 -3 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
| Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -2 -3],[ 1 1 1 1 0 0 0],[ 2 2 1 2 0 0 0],[ 2 3 1 3 0 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,-1,1,2,2,0,2,1,2,3,1,1,1,1,1,2,3,0,0,0] |
| Phi over symmetry |
[-3,-1,-1,1,2,2,0,2,1,2,3,1,1,1,1,1,2,3,0,0,0] |
| Phi of -K |
[-2,-2,-1,1,1,3,0,1,0,2,2,1,1,2,3,1,1,3,-1,0,2] |
| Phi of K* |
[-3,-1,-1,1,2,2,0,2,3,2,3,1,1,0,1,1,2,2,1,1,0] |
| Phi of -K* |
[-2,-2,-1,1,1,3,0,0,1,2,2,0,1,3,3,1,1,1,-1,0,2] |
| Symmetry type of based matrix |
c |
| u-polynomial |
-t^3+2t^2-t |
| Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
| Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
| Inner characteristic polynomial |
t^6+36t^4+14t^2 |
| Outer characteristic polynomial |
t^7+56t^5+38t^3+3t |
| Flat arrow polynomial |
4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
| 2-strand cable arrow polynomial |
3136*K1**4*K2 - 6496*K1**4 + 512*K1**3*K2*K3 - 1248*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5632*K1**2*K2**2 - 320*K1**2*K2*K4 + 7712*K1**2*K2 - 352*K1**2*K3**2 - 32*K1**2*K4**2 - 864*K1**2 + 192*K1*K2**3*K3 - 288*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3472*K1*K2*K3 + 192*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 432*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 256*K2**2*K4 - 1784*K2**2 - 448*K3**2 - 28*K4**2 + 1994 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
| If K is slice |
False |