Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,2,1,2,3,1,1,1,1,1,2,3,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.683'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+38t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.683'] |
2-strand cable arrow polynomial of the knot is: 3136*K1**4*K2 - 6496*K1**4 + 512*K1**3*K2*K3 - 1248*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5632*K1**2*K2**2 - 320*K1**2*K2*K4 + 7712*K1**2*K2 - 352*K1**2*K3**2 - 32*K1**2*K4**2 - 864*K1**2 + 192*K1*K2**3*K3 - 288*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3472*K1*K2*K3 + 192*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 432*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 256*K2**2*K4 - 1784*K2**2 - 448*K3**2 - 28*K4**2 + 1994 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.683'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20142', 'vk6.20152', 'vk6.20158', 'vk6.20168', 'vk6.21434', 'vk6.21446', 'vk6.27254', 'vk6.27276', 'vk6.27282', 'vk6.27296', 'vk6.28916', 'vk6.28938', 'vk6.28944', 'vk6.38675', 'vk6.38697', 'vk6.38707', 'vk6.38725', 'vk6.40887', 'vk6.40905', 'vk6.47263', 'vk6.47278', 'vk6.47296', 'vk6.56975', 'vk6.56977', 'vk6.56994', 'vk6.57002', 'vk6.58129', 'vk6.62678', 'vk6.62682', 'vk6.67468', 'vk6.70036', 'vk6.70048'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U2U1O6U4U6U5 |
R3 orbit | {'O1O2O3O4U3O5U2U1O6U4U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U1O6U4U3O5U2 |
Gauss code of K* | O1O2O3U4U5U6U1O6U3O5O4U2 |
Gauss code of -K* | O1O2O3U2O4O5U1O6U3U6U5U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 -1 1 3 1],[ 2 0 0 0 3 3 1],[ 2 0 0 0 2 2 1],[ 1 0 0 0 1 1 1],[-1 -3 -2 -1 0 2 1],[-3 -3 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -2 -2],[-3 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -2 -3],[ 1 1 1 1 0 0 0],[ 2 2 1 2 0 0 0],[ 2 3 1 3 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,2,2,0,2,1,2,3,1,1,1,1,1,2,3,0,0,0] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,2,1,2,3,1,1,1,1,1,2,3,0,0,0] |
Phi of -K | [-2,-2,-1,1,1,3,0,1,0,2,2,1,1,2,3,1,1,3,-1,0,2] |
Phi of K* | [-3,-1,-1,1,2,2,0,2,3,2,3,1,1,0,1,1,2,2,1,1,0] |
Phi of -K* | [-2,-2,-1,1,1,3,0,0,1,2,2,0,1,3,3,1,1,1,-1,0,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | 8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2+29w^2z+27w |
Inner characteristic polynomial | t^6+36t^4+14t^2 |
Outer characteristic polynomial | t^7+56t^5+38t^3+3t |
Flat arrow polynomial | 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial | 3136*K1**4*K2 - 6496*K1**4 + 512*K1**3*K2*K3 - 1248*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5632*K1**2*K2**2 - 320*K1**2*K2*K4 + 7712*K1**2*K2 - 352*K1**2*K3**2 - 32*K1**2*K4**2 - 864*K1**2 + 192*K1*K2**3*K3 - 288*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3472*K1*K2*K3 + 192*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 432*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 256*K2**2*K4 - 1784*K2**2 - 448*K3**2 - 28*K4**2 + 1994 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice | False |