Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,1,2,4,0,0,0,1,1,2,2,0,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.685'] |
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 6*K1*K2 + 4*K2 + 2*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.211', '6.557', '6.676', '6.685', '6.750', '6.751', '6.856', '6.919', '6.1093', '6.1371'] |
Outer characteristic polynomial of the knot is: t^7+54t^5+47t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.685'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 608*K1**4*K2 - 3200*K1**4 + 384*K1**3*K2*K3 + 96*K1**3*K3*K4 - 864*K1**3*K3 + 256*K1**2*K2**3 - 3344*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 704*K1**2*K2*K4 + 7064*K1**2*K2 - 1280*K1**2*K3**2 - 64*K1**2*K3*K5 - 128*K1**2*K4**2 - 3752*K1**2 + 128*K1*K2**3*K3 - 224*K1*K2**2*K3 + 64*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 5488*K1*K2*K3 - 32*K1*K3**2*K5 + 1256*K1*K3*K4 + 80*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 448*K2**4 - 336*K2**2*K3**2 - 56*K2**2*K4**2 + 536*K2**2*K4 - 3060*K2**2 + 264*K2*K3*K5 + 24*K2*K4*K6 - 64*K3**4 + 48*K3**2*K6 - 1540*K3**2 - 312*K4**2 - 44*K5**2 - 12*K6**2 + 3294 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.685'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4833', 'vk6.5178', 'vk6.6401', 'vk6.6834', 'vk6.8366', 'vk6.8796', 'vk6.9734', 'vk6.10039', 'vk6.11615', 'vk6.11966', 'vk6.12961', 'vk6.20453', 'vk6.20743', 'vk6.21807', 'vk6.27838', 'vk6.29347', 'vk6.31418', 'vk6.32596', 'vk6.39270', 'vk6.39775', 'vk6.41450', 'vk6.46339', 'vk6.47576', 'vk6.47916', 'vk6.49060', 'vk6.49892', 'vk6.51320', 'vk6.51539', 'vk6.53226', 'vk6.57324', 'vk6.62011', 'vk6.64307'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U2U4O6U1U6U5 |
R3 orbit | {'O1O2O3O4U3O5U2U4O6U1U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U4O6U1U3O5U2 |
Gauss code of K* | O1O2O3U1U4U5U6O5U3O4O6U2 |
Gauss code of -K* | O1O2O3U2O4O5U1O6U4U6U5U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 -1 1 3 1],[ 2 0 -1 -1 2 4 1],[ 2 1 0 0 2 2 0],[ 1 1 0 0 1 1 0],[-1 -2 -2 -1 0 1 0],[-3 -4 -2 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -2 -2],[-3 0 0 -1 -1 -2 -4],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 1],[ 2 2 0 2 0 0 1],[ 2 4 1 2 -1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,2,2,0,1,1,2,4,0,0,0,1,1,2,2,0,-1,-1] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,1,1,2,4,0,0,0,1,1,2,2,0,-1,-1] |
Phi of -K | [-2,-2,-1,1,1,3,-1,1,1,3,3,2,1,2,1,1,2,3,0,1,2] |
Phi of K* | [-3,-1,-1,1,2,2,1,2,3,1,3,0,1,1,1,2,2,3,2,1,-1] |
Phi of -K* | [-2,-2,-1,1,1,3,-1,-1,1,2,4,0,0,2,2,0,1,1,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | z^2+18z+33 |
Enhanced Jones-Krushkal polynomial | w^3z^2+18w^2z+33w |
Inner characteristic polynomial | t^6+34t^4+23t^2 |
Outer characteristic polynomial | t^7+54t^5+47t^3+4t |
Flat arrow polynomial | 4*K1**3 - 8*K1**2 - 6*K1*K2 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial | -128*K1**6 + 608*K1**4*K2 - 3200*K1**4 + 384*K1**3*K2*K3 + 96*K1**3*K3*K4 - 864*K1**3*K3 + 256*K1**2*K2**3 - 3344*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 704*K1**2*K2*K4 + 7064*K1**2*K2 - 1280*K1**2*K3**2 - 64*K1**2*K3*K5 - 128*K1**2*K4**2 - 3752*K1**2 + 128*K1*K2**3*K3 - 224*K1*K2**2*K3 + 64*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 5488*K1*K2*K3 - 32*K1*K3**2*K5 + 1256*K1*K3*K4 + 80*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 448*K2**4 - 336*K2**2*K3**2 - 56*K2**2*K4**2 + 536*K2**2*K4 - 3060*K2**2 + 264*K2*K3*K5 + 24*K2*K4*K6 - 64*K3**4 + 48*K3**2*K6 - 1540*K3**2 - 312*K4**2 - 44*K5**2 - 12*K6**2 + 3294 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}]] |
If K is slice | False |