Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.686

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,1,1,3,1,0,1,1,1,1,3,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.686']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+40t^5+34t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.686']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 256*K1**4*K2 - 1440*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 448*K1**3*K3 + 192*K1**2*K2**3 - 1408*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 4200*K1**2*K2 - 320*K1**2*K3**2 - 32*K1**2*K3*K5 - 16*K1**2*K4**2 - 2732*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2728*K1*K2*K3 + 472*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 320*K2**4 - 32*K2**3*K6 - 128*K2**2*K3**2 - 16*K2**2*K4**2 + 432*K2**2*K4 - 2030*K2**2 + 80*K2*K3*K5 + 16*K2*K4*K6 - 904*K3**2 - 172*K4**2 - 12*K5**2 - 2*K6**2 + 2090
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.686']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4222', 'vk6.4302', 'vk6.5484', 'vk6.5595', 'vk6.7583', 'vk6.7676', 'vk6.9084', 'vk6.9164', 'vk6.11165', 'vk6.12253', 'vk6.12360', 'vk6.19375', 'vk6.19668', 'vk6.19787', 'vk6.26155', 'vk6.26224', 'vk6.26571', 'vk6.26669', 'vk6.30755', 'vk6.31302', 'vk6.31697', 'vk6.31960', 'vk6.32460', 'vk6.32875', 'vk6.38155', 'vk6.38200', 'vk6.39096', 'vk6.41352', 'vk6.44812', 'vk6.44945', 'vk6.45852', 'vk6.48532', 'vk6.49337', 'vk6.52294', 'vk6.53138', 'vk6.58444', 'vk6.62968', 'vk6.63587', 'vk6.66311', 'vk6.66340']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U2U4O6U5U1U6
R3 orbit {'O1O2O3O4U3O5U2U4O6U5U1U6', 'O1O2O3O4U3U1O5U4O6U2U5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U4U6O5U1U3O6U2
Gauss code of K* O1O2O3U2U4U5U6O5U1O4O6U3
Gauss code of -K* O1O2O3U1O4O5U3O6U4U6U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 1 1 2],[ 1 0 -2 -1 1 2 2],[ 2 2 0 0 2 2 1],[ 1 1 0 0 1 1 0],[-1 -1 -2 -1 0 1 1],[-1 -2 -2 -1 -1 0 1],[-2 -2 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 0 -2 -1],[-1 1 0 1 -1 -1 -2],[-1 1 -1 0 -1 -2 -2],[ 1 0 1 1 0 1 0],[ 1 2 1 2 -1 0 -2],[ 2 1 2 2 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,0,2,1,-1,1,1,2,1,2,2,-1,0,2]
Phi over symmetry [-2,-1,-1,1,1,2,-1,1,1,1,3,1,0,1,1,1,1,3,1,0,0]
Phi of -K [-2,-1,-1,1,1,2,-1,1,1,1,3,1,0,1,1,1,1,3,1,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,1,3,3,-1,0,1,1,1,1,1,-1,-1,1]
Phi of -K* [-2,-1,-1,1,1,2,0,2,2,2,1,1,1,1,0,1,2,2,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+14z+25
Enhanced Jones-Krushkal polynomial w^3z^2+14w^2z+25w
Inner characteristic polynomial t^6+28t^4+8t^2
Outer characteristic polynomial t^7+40t^5+34t^3+3t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 256*K1**4*K2 - 1440*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 448*K1**3*K3 + 192*K1**2*K2**3 - 1408*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 4200*K1**2*K2 - 320*K1**2*K3**2 - 32*K1**2*K3*K5 - 16*K1**2*K4**2 - 2732*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2728*K1*K2*K3 + 472*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 320*K2**4 - 32*K2**3*K6 - 128*K2**2*K3**2 - 16*K2**2*K4**2 + 432*K2**2*K4 - 2030*K2**2 + 80*K2*K3*K5 + 16*K2*K4*K6 - 904*K3**2 - 172*K4**2 - 12*K5**2 - 2*K6**2 + 2090
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact