Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.695

Min(phi) over symmetries of the knot is: [-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,1,0,-1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.695']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+45t^5+49t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.695']
2-strand cable arrow polynomial of the knot is: -256*K1**6 + 2976*K1**4*K2 - 7936*K1**4 + 672*K1**3*K2*K3 + 64*K1**3*K3*K4 - 2272*K1**3*K3 - 4176*K1**2*K2**2 - 672*K1**2*K2*K4 + 11720*K1**2*K2 - 800*K1**2*K3**2 - 80*K1**2*K4**2 - 4328*K1**2 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 5824*K1*K2*K3 + 1128*K1*K3*K4 + 72*K1*K4*K5 - 32*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 336*K2**2*K4 - 4398*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 1688*K3**2 - 396*K4**2 - 32*K5**2 - 2*K6**2 + 4490
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.695']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.18876', 'vk6.18882', 'vk6.18889', 'vk6.18895', 'vk6.18902', 'vk6.18904', 'vk6.18952', 'vk6.18958', 'vk6.18967', 'vk6.18973', 'vk6.18978', 'vk6.18980', 'vk6.25579', 'vk6.25581', 'vk6.25590', 'vk6.25600', 'vk6.25601', 'vk6.25607', 'vk6.37609', 'vk6.37611', 'vk6.37616', 'vk6.37622', 'vk6.37631', 'vk6.37637', 'vk6.56418', 'vk6.56423', 'vk6.56456', 'vk6.56457', 'vk6.56463', 'vk6.56467', 'vk6.56469', 'vk6.56478']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U6U2O6U4U1U5
R3 orbit {'O1O2O3O4U3O5U6U2O6U4U1U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U4U1O6U3U6O5U2
Gauss code of K* O1O2O3U2U4U5U1O5U3O6O4U6
Gauss code of -K* O1O2O3U4O5O4U1O6U3U6U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 -1 1 3 -1],[ 1 0 0 -1 2 3 0],[ 1 0 0 0 1 1 1],[ 1 1 0 0 1 1 1],[-1 -2 -1 -1 0 1 -1],[-3 -3 -1 -1 -1 0 -3],[ 1 0 -1 -1 1 3 0]]
Primitive based matrix [[ 0 3 1 -1 -1 -1 -1],[-3 0 -1 -1 -1 -3 -3],[-1 1 0 -1 -1 -1 -2],[ 1 1 1 0 0 1 1],[ 1 1 1 0 0 1 0],[ 1 3 1 -1 -1 0 0],[ 1 3 2 -1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,1,1,1,1,1,1,1,3,3,1,1,1,2,0,-1,-1,-1,0,0]
Phi over symmetry [-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,1,0,-1,0,-1,-1,0]
Phi of -K [-1,-1,-1,-1,1,3,-1,-1,0,1,3,0,0,0,1,1,1,1,1,3,1]
Phi of K* [-3,-1,1,1,1,1,1,1,1,3,3,0,1,1,1,0,-1,0,-1,-1,0]
Phi of -K* [-1,-1,-1,-1,1,3,-1,-1,0,1,3,0,0,1,1,1,1,1,2,3,1]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+31t^4+29t^2+1
Outer characteristic polynomial t^7+45t^5+49t^3+5t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -256*K1**6 + 2976*K1**4*K2 - 7936*K1**4 + 672*K1**3*K2*K3 + 64*K1**3*K3*K4 - 2272*K1**3*K3 - 4176*K1**2*K2**2 - 672*K1**2*K2*K4 + 11720*K1**2*K2 - 800*K1**2*K3**2 - 80*K1**2*K4**2 - 4328*K1**2 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 5824*K1*K2*K3 + 1128*K1*K3*K4 + 72*K1*K4*K5 - 32*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 336*K2**2*K4 - 4398*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 1688*K3**2 - 396*K4**2 - 32*K5**2 - 2*K6**2 + 4490
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact