Gauss code |
O1O2O3O4U3O5U6U4O6U1U5U2 |
R3 orbit |
{'O1O2O3O4U3O5U6U4O6U1U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U4O6U1U6O5U2 |
Gauss code of K* |
O1O2O3U1U3U4U5O4U2O6O5U6 |
Gauss code of -K* |
O1O2O3U4O5O4U2O6U5U6U1U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -1 1 2 -1],[ 2 0 2 -1 2 2 1],[-1 -2 0 -1 1 1 -2],[ 1 1 1 0 1 1 0],[-1 -2 -1 -1 0 0 -1],[-2 -2 -1 -1 0 0 -2],[ 1 -1 2 0 1 2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -1 -2 -2],[-1 0 0 -1 -1 -1 -2],[-1 1 1 0 -1 -2 -2],[ 1 1 1 1 0 0 1],[ 1 2 1 2 0 0 -1],[ 2 2 2 2 -1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,1,1,2,2,1,1,1,2,1,2,2,0,-1,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,2,2,2,0,1,1,1,1,2,2,-1,0,1] |
Phi of -K |
[-2,-1,-1,1,1,2,0,2,1,1,2,0,0,1,1,1,1,2,-1,0,1] |
Phi of K* |
[-2,-1,-1,1,1,2,0,1,1,2,2,1,0,1,1,1,1,1,0,0,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,1,2,2,2,0,1,1,1,1,2,2,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+28t^4+41t^2+1 |
Outer characteristic polynomial |
t^7+40t^5+67t^3+6t |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 8*K1*K2 + K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial |
1248*K1**4*K2 - 3600*K1**4 + 864*K1**3*K2*K3 - 576*K1**3*K3 - 128*K1**2*K2**4 + 416*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5664*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 7888*K1**2*K2 - 1072*K1**2*K3**2 - 32*K1**2*K4**2 - 3872*K1**2 + 320*K1*K2**3*K3 - 1856*K1*K2**2*K3 - 192*K1*K2**2*K5 + 32*K1*K2*K3**3 - 224*K1*K2*K3*K4 + 7272*K1*K2*K3 + 2000*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 688*K2**4 - 32*K2**3*K6 - 576*K2**2*K3**2 - 64*K2**2*K4**2 + 1544*K2**2*K4 - 3962*K2**2 - 32*K2*K3**2*K4 + 488*K2*K3*K5 + 56*K2*K4*K6 - 32*K3**4 + 48*K3**2*K6 - 2304*K3**2 - 868*K4**2 - 104*K5**2 - 22*K6**2 + 4002 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}]] |
If K is slice |
False |