Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.704

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,2,1,3,2,1,2,3,1,0,1,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.704']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.573', '6.628', '6.703', '6.704', '6.723', '6.796', '6.1083', '6.1099', '6.1315']
Outer characteristic polynomial of the knot is: t^7+63t^5+197t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.704']
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2**3 - 320*K1**4*K2**2 + 320*K1**4*K2 - 880*K1**4 + 96*K1**3*K2*K3 + 384*K1**2*K2**5 - 1920*K1**2*K2**4 + 2048*K1**2*K2**3 - 3648*K1**2*K2**2 + 3376*K1**2*K2 - 336*K1**2*K3**2 - 32*K1**2*K4**2 - 2264*K1**2 + 1024*K1*K2**3*K3 + 2432*K1*K2*K3 + 400*K1*K3*K4 + 88*K1*K4*K5 - 288*K2**6 + 64*K2**4*K4 - 840*K2**4 - 192*K2**2*K3**2 - 8*K2**2*K4**2 + 280*K2**2*K4 - 784*K2**2 + 32*K2*K3*K5 - 696*K3**2 - 218*K4**2 - 40*K5**2 + 1792
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.704']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73700', 'vk6.73819', 'vk6.74199', 'vk6.74816', 'vk6.75615', 'vk6.75807', 'vk6.76370', 'vk6.76876', 'vk6.78594', 'vk6.78796', 'vk6.79234', 'vk6.79710', 'vk6.80240', 'vk6.80384', 'vk6.80718', 'vk6.81074', 'vk6.81612', 'vk6.81790', 'vk6.81928', 'vk6.82172', 'vk6.82301', 'vk6.82654', 'vk6.83190', 'vk6.84061', 'vk6.84220', 'vk6.84695', 'vk6.85014', 'vk6.86011', 'vk6.87751', 'vk6.88216', 'vk6.89401', 'vk6.89598']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U2U3O5U1U6U4
R3 orbit {'O1O2O3O4U5O6U2U3O5U1U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U4O6U2U3O5U6
Gauss code of K* O1O2O3U1U4U5U3O6U2O4O5U6
Gauss code of -K* O1O2O3U4O5O6U2O4U1U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 0 3 -1 2],[ 2 0 0 2 4 0 2],[ 2 0 0 1 2 1 1],[ 0 -2 -1 0 1 0 0],[-3 -4 -2 -1 0 -2 -1],[ 1 0 -1 0 2 0 2],[-2 -2 -1 0 1 -2 0]]
Primitive based matrix [[ 0 3 2 0 -1 -2 -2],[-3 0 -1 -1 -2 -2 -4],[-2 1 0 0 -2 -1 -2],[ 0 1 0 0 0 -1 -2],[ 1 2 2 0 0 -1 0],[ 2 2 1 1 1 0 0],[ 2 4 2 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,0,1,2,2,1,1,2,2,4,0,2,1,2,0,1,2,1,0,0]
Phi over symmetry [-3,-2,0,1,2,2,0,2,2,1,3,2,1,2,3,1,0,1,1,0,0]
Phi of -K [-2,-2,-1,0,2,3,0,0,1,3,3,1,0,2,1,1,1,2,2,2,0]
Phi of K* [-3,-2,0,1,2,2,0,2,2,1,3,2,1,2,3,1,0,1,1,0,0]
Phi of -K* [-2,-2,-1,0,2,3,0,0,2,2,4,1,1,1,2,0,2,2,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 4w^4z-8w^3z+13w^2z+19w
Inner characteristic polynomial t^6+41t^4+90t^2
Outer characteristic polynomial t^7+63t^5+197t^3
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
2-strand cable arrow polynomial 128*K1**4*K2**3 - 320*K1**4*K2**2 + 320*K1**4*K2 - 880*K1**4 + 96*K1**3*K2*K3 + 384*K1**2*K2**5 - 1920*K1**2*K2**4 + 2048*K1**2*K2**3 - 3648*K1**2*K2**2 + 3376*K1**2*K2 - 336*K1**2*K3**2 - 32*K1**2*K4**2 - 2264*K1**2 + 1024*K1*K2**3*K3 + 2432*K1*K2*K3 + 400*K1*K3*K4 + 88*K1*K4*K5 - 288*K2**6 + 64*K2**4*K4 - 840*K2**4 - 192*K2**2*K3**2 - 8*K2**2*K4**2 + 280*K2**2*K4 - 784*K2**2 + 32*K2*K3*K5 - 696*K3**2 - 218*K4**2 - 40*K5**2 + 1792
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}], [{6}, {5}, {4}, {2, 3}, {1}], [{6}, {5}, {4}, {3}, {1, 2}], [{6}, {5}, {4}, {3}, {2}, {1}]]
If K is slice False
Contact