Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.707

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,3,0,-1,1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.707']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+60t^5+209t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.707']
2-strand cable arrow polynomial of the knot is: -144*K1**4 - 288*K1**3*K3 + 96*K1**2*K2**2*K4 - 1664*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 640*K1**2*K2*K4 + 4112*K1**2*K2 - 16*K1**2*K3**2 - 336*K1**2*K4**2 - 4664*K1**2 - 416*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 4176*K1*K2*K3 - 96*K1*K2*K4*K5 + 1560*K1*K3*K4 + 472*K1*K4*K5 - 640*K2**4 - 72*K2**2*K4**2 + 1984*K2**2*K4 - 3798*K2**2 + 192*K2*K3*K5 + 64*K2*K4*K6 - 1868*K3**2 - 1328*K4**2 - 156*K5**2 - 2*K6**2 + 3790
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.707']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73317', 'vk6.73460', 'vk6.74028', 'vk6.74585', 'vk6.75205', 'vk6.75464', 'vk6.76061', 'vk6.76778', 'vk6.78194', 'vk6.78426', 'vk6.79011', 'vk6.79587', 'vk6.80015', 'vk6.80168', 'vk6.80550', 'vk6.81002', 'vk6.81884', 'vk6.82357', 'vk6.82380', 'vk6.82601', 'vk6.83630', 'vk6.83674', 'vk6.84310', 'vk6.84369', 'vk6.84480', 'vk6.84588', 'vk6.84630', 'vk6.85227', 'vk6.85601', 'vk6.86754', 'vk6.88710', 'vk6.88990']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U3U2O5U1U4U6
R3 orbit {'O1O2O3O4U5O6U3U2O5U1U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U4O6U3U2O5U6
Gauss code of K* O1O2O3U1U4U5U2O6U3O5O4U6
Gauss code of -K* O1O2O3U4O5O6U1O4U2U6U5U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 -1 2 -1 3],[ 2 0 1 1 3 0 3],[ 1 -1 0 0 1 0 2],[ 1 -1 0 0 0 1 1],[-2 -3 -1 0 0 -2 0],[ 1 0 0 -1 2 0 3],[-3 -3 -2 -1 0 -3 0]]
Primitive based matrix [[ 0 3 2 -1 -1 -1 -2],[-3 0 0 -1 -2 -3 -3],[-2 0 0 0 -1 -2 -3],[ 1 1 0 0 0 1 -1],[ 1 2 1 0 0 0 -1],[ 1 3 2 -1 0 0 0],[ 2 3 3 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,3,0,-1,1,0,1,0]
Phi over symmetry [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,3,0,-1,1,0,1,0]
Phi of -K [-2,-1,-1,-1,2,3,0,0,1,1,2,0,-1,3,3,0,2,2,1,1,1]
Phi of K* [-3,-2,1,1,1,2,1,1,2,3,2,1,2,3,1,0,-1,1,0,0,0]
Phi of -K* [-2,-1,-1,-1,2,3,0,1,1,3,3,-1,0,2,3,0,0,1,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-4w^3z+27w^2z+23w
Inner characteristic polynomial t^6+40t^4+115t^2+4
Outer characteristic polynomial t^7+60t^5+209t^3+16t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial -144*K1**4 - 288*K1**3*K3 + 96*K1**2*K2**2*K4 - 1664*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 640*K1**2*K2*K4 + 4112*K1**2*K2 - 16*K1**2*K3**2 - 336*K1**2*K4**2 - 4664*K1**2 - 416*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 4176*K1*K2*K3 - 96*K1*K2*K4*K5 + 1560*K1*K3*K4 + 472*K1*K4*K5 - 640*K2**4 - 72*K2**2*K4**2 + 1984*K2**2*K4 - 3798*K2**2 + 192*K2*K3*K5 + 64*K2*K4*K6 - 1868*K3**2 - 1328*K4**2 - 156*K5**2 - 2*K6**2 + 3790
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact