Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.711

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,2,1,2,0,1,1,1,1,0,2,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.711']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+29t^5+64t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.711']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2048*K1**4*K2 - 7696*K1**4 - 544*K1**3*K3 + 512*K1**2*K2**3 - 7760*K1**2*K2**2 - 160*K1**2*K2*K4 + 12792*K1**2*K2 - 16*K1**2*K3**2 - 3600*K1**2 - 416*K1*K2**2*K3 + 5880*K1*K2*K3 + 152*K1*K3*K4 - 896*K2**4 + 776*K2**2*K4 - 3968*K2**2 - 1128*K3**2 - 156*K4**2 + 4242
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.711']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16942', 'vk6.17184', 'vk6.20554', 'vk6.21953', 'vk6.23341', 'vk6.23635', 'vk6.28012', 'vk6.29477', 'vk6.35379', 'vk6.35798', 'vk6.39416', 'vk6.41607', 'vk6.42856', 'vk6.43133', 'vk6.45996', 'vk6.47670', 'vk6.55093', 'vk6.55345', 'vk6.57422', 'vk6.58591', 'vk6.59494', 'vk6.59786', 'vk6.62093', 'vk6.63069', 'vk6.64936', 'vk6.65143', 'vk6.66958', 'vk6.67817', 'vk6.68228', 'vk6.68370', 'vk6.69573', 'vk6.70268']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U4U1O5U3U6U2
R3 orbit {'O1O2O3O4U5O6U4U1O5U3U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U5U2O6U4U1O5U6
Gauss code of K* O1O2O3U4U3U1U5O6U2O5O4U6
Gauss code of -K* O1O2O3U4O5O6U2O4U6U3U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 0 -1 2],[ 2 0 2 0 0 1 2],[-1 -2 0 -1 0 -1 1],[ 0 0 1 0 1 -1 1],[ 0 0 0 -1 0 0 0],[ 1 -1 1 1 0 0 2],[-2 -2 -1 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 -2],[-1 1 0 0 -1 -1 -2],[ 0 0 0 0 -1 0 0],[ 0 1 1 1 0 -1 0],[ 1 2 1 0 1 0 -1],[ 2 2 2 0 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,0,1,2,2,0,1,1,2,1,0,0,1,0,1]
Phi over symmetry [-2,-1,0,0,1,2,0,1,2,1,2,0,1,1,1,1,0,2,1,2,0]
Phi of -K [-2,-1,0,0,1,2,0,2,2,1,2,0,1,1,1,-1,0,1,1,2,0]
Phi of K* [-2,-1,0,0,1,2,0,1,2,1,2,0,1,1,1,1,0,2,1,2,0]
Phi of -K* [-2,-1,0,0,1,2,1,0,0,2,2,0,1,1,2,-1,0,0,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+19t^4+38t^2+1
Outer characteristic polynomial t^7+29t^5+64t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 + 2048*K1**4*K2 - 7696*K1**4 - 544*K1**3*K3 + 512*K1**2*K2**3 - 7760*K1**2*K2**2 - 160*K1**2*K2*K4 + 12792*K1**2*K2 - 16*K1**2*K3**2 - 3600*K1**2 - 416*K1*K2**2*K3 + 5880*K1*K2*K3 + 152*K1*K3*K4 - 896*K2**4 + 776*K2**2*K4 - 3968*K2**2 - 1128*K3**2 - 156*K4**2 + 4242
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact