Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.715

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,1,1,1,1,2,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.715']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+47t^5+129t^3+27t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.715']
2-strand cable arrow polynomial of the knot is: -16*K1**4 - 4128*K1**2*K2**2 - 160*K1**2*K2*K4 + 2432*K1**2*K2 - 16*K1**2*K3**2 - 1804*K1**2 + 1344*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 128*K1*K2**2*K3 - 544*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4568*K1*K2*K3 - 64*K1*K2*K4*K5 + 216*K1*K3*K4 + 32*K1*K4*K5 - 808*K2**4 - 976*K2**2*K3**2 - 72*K2**2*K4**2 + 544*K2**2*K4 - 1134*K2**2 - 32*K2*K3**2*K4 + 488*K2*K3*K5 + 64*K2*K4*K6 - 1216*K3**2 - 130*K4**2 - 28*K5**2 - 2*K6**2 + 1536
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.715']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.70500', 'vk6.70505', 'vk6.70561', 'vk6.70570', 'vk6.70706', 'vk6.70717', 'vk6.70809', 'vk6.70818', 'vk6.70981', 'vk6.70984', 'vk6.71065', 'vk6.71070', 'vk6.71204', 'vk6.71207', 'vk6.71277', 'vk6.71280', 'vk6.71760', 'vk6.72179', 'vk6.74071', 'vk6.74143', 'vk6.74638', 'vk6.74712', 'vk6.76196', 'vk6.76225', 'vk6.77553', 'vk6.79079', 'vk6.79152', 'vk6.80647', 'vk6.81261', 'vk6.87022', 'vk6.87941', 'vk6.89131']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U4U3O5U1U2U6
R3 orbit {'O1O2O3O4U5O6U4U3O5U1U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U4O6U2U1O5U6
Gauss code of K* O1O2O3U1U2U4U5O6U3O5O4U6
Gauss code of -K* O1O2O3U4O5O6U1O4U6U5U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 0 -1 3],[ 2 0 1 1 1 0 3],[ 0 -1 0 1 1 -2 2],[ 0 -1 -1 0 0 -1 1],[ 0 -1 -1 0 0 0 0],[ 1 0 2 1 0 0 3],[-3 -3 -2 -1 0 -3 0]]
Primitive based matrix [[ 0 3 0 0 0 -1 -2],[-3 0 0 -1 -2 -3 -3],[ 0 0 0 0 -1 0 -1],[ 0 1 0 0 -1 -1 -1],[ 0 2 1 1 0 -2 -1],[ 1 3 0 1 2 0 0],[ 2 3 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,1,1,1,1,2,1,0]
Phi over symmetry [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,1,1,1,1,2,1,0]
Phi of -K [-2,-1,0,0,0,3,1,1,1,1,2,-1,0,1,1,-1,-1,1,0,2,3]
Phi of K* [-3,0,0,0,1,2,1,2,3,1,2,1,1,-1,1,0,0,1,1,1,1]
Phi of -K* [-2,-1,0,0,0,3,0,1,1,1,3,0,1,2,3,0,-1,0,-1,1,2]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial z^2+6z+9
Enhanced Jones-Krushkal polynomial -4w^4z^2+5w^3z^2-16w^3z+22w^2z+9w
Inner characteristic polynomial t^6+33t^4+50t^2+9
Outer characteristic polynomial t^7+47t^5+129t^3+27t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 - 4128*K1**2*K2**2 - 160*K1**2*K2*K4 + 2432*K1**2*K2 - 16*K1**2*K3**2 - 1804*K1**2 + 1344*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 128*K1*K2**2*K3 - 544*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4568*K1*K2*K3 - 64*K1*K2*K4*K5 + 216*K1*K3*K4 + 32*K1*K4*K5 - 808*K2**4 - 976*K2**2*K3**2 - 72*K2**2*K4**2 + 544*K2**2*K4 - 1134*K2**2 - 32*K2*K3**2*K4 + 488*K2*K3*K5 + 64*K2*K4*K6 - 1216*K3**2 - 130*K4**2 - 28*K5**2 - 2*K6**2 + 1536
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact