Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,4,2,1,2,2,1,0,-1,-1,-1,0,2] |
Flat knots (up to 7 crossings) with same phi are :['6.719'] |
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354'] |
Outer characteristic polynomial of the knot is: t^7+66t^5+74t^3+13t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.719'] |
2-strand cable arrow polynomial of the knot is: -528*K1**4 + 512*K1**3*K2*K3 + 32*K1**3*K3*K4 - 704*K1**3*K3 - 736*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 2840*K1**2*K2 - 1840*K1**2*K3**2 - 48*K1**2*K4**2 - 3480*K1**2 + 64*K1*K2**3*K3 - 352*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 4864*K1*K2*K3 + 1360*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 2542*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 1884*K3**2 - 272*K4**2 - 12*K5**2 - 2*K6**2 + 2686 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.719'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16984', 'vk6.17227', 'vk6.20214', 'vk6.21504', 'vk6.23388', 'vk6.23699', 'vk6.27408', 'vk6.29024', 'vk6.35445', 'vk6.35888', 'vk6.38823', 'vk6.41012', 'vk6.42881', 'vk6.43185', 'vk6.45586', 'vk6.47353', 'vk6.55147', 'vk6.55396', 'vk6.57053', 'vk6.58173', 'vk6.59523', 'vk6.59871', 'vk6.61568', 'vk6.62740', 'vk6.64963', 'vk6.65169', 'vk6.66672', 'vk6.67510', 'vk6.68255', 'vk6.68411', 'vk6.69326', 'vk6.70079'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1O5U2U4U3O6U5U6 |
R3 orbit | {'O1O2O3O4U1O5U2U4U3O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6O5U2U1U3O6U4 |
Gauss code of K* | O1O2O3U4O5O4U6U1U3U2O6U5 |
Gauss code of -K* | O1O2O3U4O5U2U1U3U5O6O4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 1 1 2 1],[ 3 0 1 3 2 3 0],[ 2 -1 0 2 1 3 1],[-1 -3 -2 0 0 2 1],[-1 -2 -1 0 0 1 1],[-2 -3 -3 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 1 -2 -3],[-2 0 1 -1 -2 -3 -3],[-1 -1 0 -1 -1 -1 0],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 2 3 1 1 2 0 -1],[ 3 3 0 2 3 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,-1,2,3,-1,1,2,3,3,1,1,1,0,0,1,2,2,3,1] |
Phi over symmetry | [-3,-2,1,1,1,2,0,1,2,4,2,1,2,2,1,0,-1,-1,-1,0,2] |
Phi of -K | [-3,-2,1,1,1,2,0,1,2,4,2,1,2,2,1,0,-1,-1,-1,0,2] |
Phi of K* | [-2,-1,-1,-1,2,3,-1,0,2,1,2,0,1,1,1,1,2,2,2,4,0] |
Phi of -K* | [-3,-2,1,1,1,2,1,0,2,3,3,1,1,2,3,-1,-1,-1,0,1,2] |
Symmetry type of based matrix | c |
u-polynomial | t^3-3t |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w |
Inner characteristic polynomial | t^6+46t^4+22t^2+1 |
Outer characteristic polynomial | t^7+66t^5+74t^3+13t |
Flat arrow polynomial | -2*K1*K2 + K1 + K3 + 1 |
2-strand cable arrow polynomial | -528*K1**4 + 512*K1**3*K2*K3 + 32*K1**3*K3*K4 - 704*K1**3*K3 - 736*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 2840*K1**2*K2 - 1840*K1**2*K3**2 - 48*K1**2*K4**2 - 3480*K1**2 + 64*K1*K2**3*K3 - 352*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 4864*K1*K2*K3 + 1360*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 2542*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 1884*K3**2 - 272*K4**2 - 12*K5**2 - 2*K6**2 + 2686 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice | False |