Gauss code |
O1O2O3O4U1O5U3U4U2O6U5U6 |
R3 orbit |
{'O1O2O3O4U1O5U3U4U2O6U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6O5U3U1U2O6U4 |
Gauss code of K* |
O1O2O3U4O5O4U6U3U1U2O6U5 |
Gauss code of -K* |
O1O2O3U4O5U2U3U1U5O6O4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 -1 1 2 1],[ 3 0 3 1 2 3 0],[ 0 -3 0 -1 1 3 1],[ 1 -1 1 0 1 2 1],[-1 -2 -1 -1 0 1 1],[-2 -3 -3 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 1 -1 -3 -2 -3],[-1 -1 0 -1 -1 -1 0],[-1 1 1 0 -1 -1 -2],[ 0 3 1 1 0 -1 -3],[ 1 2 1 1 1 0 -1],[ 3 3 0 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,-1,1,3,2,3,1,1,1,0,1,1,2,1,3,1] |
Phi over symmetry |
[-3,-1,0,1,1,2,1,0,2,4,2,0,1,1,1,0,0,-1,-1,0,2] |
Phi of -K |
[-3,-1,0,1,1,2,1,0,2,4,2,0,1,1,1,0,0,-1,-1,0,2] |
Phi of K* |
[-2,-1,-1,0,1,3,0,2,-1,1,2,1,0,1,2,0,1,4,0,0,1] |
Phi of -K* |
[-3,-1,0,1,1,2,1,3,0,2,3,1,1,1,2,1,1,3,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w |
Inner characteristic polynomial |
t^6+44t^4+17t^2 |
Outer characteristic polynomial |
t^7+60t^5+42t^3+7t |
Flat arrow polynomial |
4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-128*K1**6 + 256*K1**4*K2**3 - 640*K1**4*K2**2 + 1024*K1**4*K2 - 2448*K1**4 + 160*K1**3*K2*K3 - 416*K1**3*K3 - 1216*K1**2*K2**4 + 3232*K1**2*K2**3 - 6560*K1**2*K2**2 - 352*K1**2*K2*K4 + 6728*K1**2*K2 - 48*K1**2*K3**2 - 3116*K1**2 + 928*K1*K2**3*K3 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3856*K1*K2*K3 + 120*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 1928*K2**4 - 208*K2**2*K3**2 - 8*K2**2*K4**2 + 712*K2**2*K4 - 1152*K2**2 + 24*K2*K3*K5 - 684*K3**2 - 86*K4**2 + 2460 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |