Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.729

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,1,2,4,2,0,0,0,-1,0,0,0,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.729']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+55t^5+38t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.729']
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 192*K1**3*K2*K3 - 576*K1**3*K3 - 288*K1**2*K2**2 + 1800*K1**2*K2 - 592*K1**2*K3**2 - 2396*K1**2 - 128*K1*K2**2*K3 + 2704*K1*K2*K3 + 616*K1*K3*K4 + 8*K1*K4*K5 - 8*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 1678*K2**2 + 24*K2*K3*K5 + 8*K2*K4*K6 - 1192*K3**2 - 234*K4**2 - 12*K5**2 - 2*K6**2 + 1760
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.729']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17116', 'vk6.17359', 'vk6.20260', 'vk6.21571', 'vk6.23512', 'vk6.23849', 'vk6.27508', 'vk6.29094', 'vk6.35661', 'vk6.36095', 'vk6.38919', 'vk6.41130', 'vk6.43020', 'vk6.43330', 'vk6.45670', 'vk6.47397', 'vk6.55265', 'vk6.55514', 'vk6.57087', 'vk6.58247', 'vk6.59678', 'vk6.60020', 'vk6.61649', 'vk6.62823', 'vk6.65070', 'vk6.65260', 'vk6.66728', 'vk6.67596', 'vk6.68328', 'vk6.68476', 'vk6.69374', 'vk6.70112']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U3U2O6U5U6
R3 orbit {'O1O2O3O4U1O5U4U3U2O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6O5U3U2U1O6U4
Gauss code of K* O1O2O3U4O5O4U6U3U2U1O6U5
Gauss code of -K* O1O2O3U4O5U3U2U1U5O6O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 0 2 1],[ 3 0 3 2 1 3 0],[ 0 -3 0 0 0 3 1],[ 0 -2 0 0 0 2 1],[ 0 -1 0 0 0 1 1],[-2 -3 -3 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 0 -3],[-2 0 1 -1 -2 -3 -3],[-1 -1 0 -1 -1 -1 0],[ 0 1 1 0 0 0 -1],[ 0 2 1 0 0 0 -2],[ 0 3 1 0 0 0 -3],[ 3 3 0 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,0,3,-1,1,2,3,3,1,1,1,0,0,0,1,0,2,3]
Phi over symmetry [-3,0,0,0,1,2,0,1,2,4,2,0,0,0,-1,0,0,0,0,1,2]
Phi of -K [-3,0,0,0,1,2,0,1,2,4,2,0,0,0,-1,0,0,0,0,1,2]
Phi of K* [-2,-1,0,0,0,3,2,-1,0,1,2,0,0,0,4,0,0,0,0,1,2]
Phi of -K* [-3,0,0,0,1,2,1,2,3,0,3,0,0,1,1,0,1,2,1,3,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial -4w^4z^2+4w^3z^2-12w^3z+17w^2z+11w
Inner characteristic polynomial t^6+41t^4+17t^2
Outer characteristic polynomial t^7+55t^5+38t^3+6t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -144*K1**4 + 192*K1**3*K2*K3 - 576*K1**3*K3 - 288*K1**2*K2**2 + 1800*K1**2*K2 - 592*K1**2*K3**2 - 2396*K1**2 - 128*K1*K2**2*K3 + 2704*K1*K2*K3 + 616*K1*K3*K4 + 8*K1*K4*K5 - 8*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 1678*K2**2 + 24*K2*K3*K5 + 8*K2*K4*K6 - 1192*K3**2 - 234*K4**2 - 12*K5**2 - 2*K6**2 + 1760
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact