Gauss code |
O1O2O3O4O5O6U2U3U5U6U1U4 |
R3 orbit |
{'O1O2O3O4O5O6U2U3U5U6U1U4', 'O1O2O3O4O5U1O6U3U5U2U6U4'} |
R3 orbit length |
2 |
Gauss code of -K |
O1O2O3O4O5O6U3U6U1U2U4U5 |
Gauss code of K* |
O1O2O3O4O5O6U5U1U2U6U3U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U4U1U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -4 -2 3 1 3],[ 1 0 -3 -1 3 1 3],[ 4 3 0 1 4 2 3],[ 2 1 -1 0 3 1 2],[-3 -3 -4 -3 0 -1 1],[-1 -1 -2 -1 1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -2 -4],[-3 0 1 -1 -3 -3 -4],[-3 -1 0 -1 -3 -2 -3],[-1 1 1 0 -1 -1 -2],[ 1 3 3 1 0 -1 -3],[ 2 3 2 1 1 0 -1],[ 4 4 3 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,2,4,-1,1,3,3,4,1,3,2,3,1,1,2,1,3,1] |
Phi over symmetry |
[-4,-2,-1,1,3,3,1,0,3,3,4,0,2,2,3,1,1,1,1,1,-1] |
Phi of -K |
[-4,-2,-1,1,3,3,1,0,3,3,4,0,2,2,3,1,1,1,1,1,-1] |
Phi of K* |
[-3,-3,-1,1,2,4,-1,1,1,3,4,1,1,2,3,1,2,3,0,0,1] |
Phi of -K* |
[-4,-2,-1,1,3,3,1,3,2,3,4,1,1,2,3,1,3,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+17w^2z+19w |
Inner characteristic polynomial |
t^6+76t^4+17t^2 |
Outer characteristic polynomial |
t^7+116t^5+40t^3+3t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-720*K1**4 - 64*K1**3*K3 - 128*K1**2*K2**4 + 512*K1**2*K2**3 - 3440*K1**2*K2**2 - 416*K1**2*K2*K4 + 3968*K1**2*K2 - 16*K1**2*K3**2 - 64*K1**2*K4**2 - 2468*K1**2 + 960*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 640*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 352*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 3592*K1*K2*K3 - 64*K1*K2*K4*K5 + 440*K1*K3*K4 + 80*K1*K4*K5 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1488*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 736*K2**2*K3**2 - 272*K2**2*K4**2 + 1360*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 1380*K2**2 + 360*K2*K3*K5 + 104*K2*K4*K6 - 868*K3**2 - 314*K4**2 - 32*K5**2 - 4*K6**2 + 1936 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |