Gauss code |
O1O2O3O4U1O5U4U6U5O6U2U3 |
R3 orbit |
{'O1O2O3O4U1O5U4U6U5O6U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U3O5U6U5U1O6U4 |
Gauss code of K* |
O1O2O3U2O4O5U6U4U5U1O6U3 |
Gauss code of -K* |
O1O2O3U1O4U3U5U6U4O5O6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 2 0 2 -1],[ 3 0 2 3 1 1 3],[ 0 -2 0 1 -1 2 -1],[-2 -3 -1 0 -1 2 -3],[ 0 -1 1 1 0 1 -1],[-2 -1 -2 -2 -1 0 -2],[ 1 -3 1 3 1 2 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 2 -1 -1 -3 -3],[-2 -2 0 -1 -2 -2 -1],[ 0 1 1 0 1 -1 -1],[ 0 1 2 -1 0 -1 -2],[ 1 3 2 1 1 0 -3],[ 3 3 1 1 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,1,3,-2,1,1,3,3,1,2,2,1,-1,1,1,1,2,3] |
Phi over symmetry |
[-3,-1,0,0,2,2,-1,1,2,2,4,0,0,0,1,1,1,0,1,1,-2] |
Phi of -K |
[-3,-1,0,0,2,2,-1,1,2,2,4,0,0,0,1,1,1,0,1,1,-2] |
Phi of K* |
[-2,-2,0,0,1,3,-2,0,1,1,4,1,1,0,2,-1,0,1,0,2,-1] |
Phi of -K* |
[-3,-1,0,0,2,2,3,1,2,1,3,1,1,2,3,1,1,1,2,1,-2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+23w^2z+31w |
Inner characteristic polynomial |
t^6+51t^4+77t^2+1 |
Outer characteristic polynomial |
t^7+69t^5+119t^3+6t |
Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 2*K1*K2 - 2*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 640*K1**4*K2 - 1312*K1**4 + 256*K1**3*K2*K3 - 128*K1**3*K3 - 320*K1**2*K2**4 + 2080*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 7248*K1**2*K2**2 - 384*K1**2*K2*K4 + 7736*K1**2*K2 - 64*K1**2*K3**2 - 4968*K1**2 + 544*K1*K2**3*K3 - 640*K1*K2**2*K3 - 32*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5312*K1*K2*K3 + 288*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1344*K2**4 - 272*K2**2*K3**2 - 8*K2**2*K4**2 + 736*K2**2*K4 - 2616*K2**2 + 88*K2*K3*K5 - 1168*K3**2 - 192*K4**2 - 8*K5**2 + 3422 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |