Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,1,3,3,1,0,2,2,1,1,2,-1,-1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.738'] |
Arrow polynomial of the knot is: 8*K1**3 - 2*K1**2 - 6*K1*K2 - 3*K1 + K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.677', '6.696', '6.738', '6.758'] |
Outer characteristic polynomial of the knot is: t^7+63t^5+60t^3+12t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.738'] |
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 96*K1**4*K2 - 368*K1**4 + 128*K1**3*K2**3*K3 + 800*K1**3*K2*K3 - 192*K1**3*K3 - 1088*K1**2*K2**4 + 1824*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7472*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 5464*K1**2*K2 - 784*K1**2*K3**2 - 3404*K1**2 - 384*K1*K2**4*K3 + 2016*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 192*K1*K2*K3*K4 + 6864*K1*K2*K3 - 96*K1*K2*K4*K5 + 1128*K1*K3*K4 + 8*K1*K4*K5 + 24*K1*K5*K6 - 192*K2**6 + 384*K2**4*K4 - 1944*K2**4 - 32*K2**3*K6 - 992*K2**2*K3**2 - 248*K2**2*K4**2 + 1312*K2**2*K4 - 1606*K2**2 + 272*K2*K3*K5 + 88*K2*K4*K6 - 1744*K3**2 - 454*K4**2 - 20*K5**2 - 18*K6**2 + 2708 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.738'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16904', 'vk6.17148', 'vk6.20516', 'vk6.21902', 'vk6.23296', 'vk6.23597', 'vk6.27959', 'vk6.29436', 'vk6.35310', 'vk6.35748', 'vk6.39369', 'vk6.41551', 'vk6.42815', 'vk6.43099', 'vk6.45938', 'vk6.47623', 'vk6.55059', 'vk6.55306', 'vk6.57385', 'vk6.58553', 'vk6.59455', 'vk6.59746', 'vk6.62042', 'vk6.63038', 'vk6.64900', 'vk6.65115', 'vk6.66934', 'vk6.67788', 'vk6.68209', 'vk6.68355', 'vk6.69541', 'vk6.70244'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2O5U1U3U4O6U5U6 |
R3 orbit | {'O1O2O3O4U2O5U1U3U4O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6O5U1U2U4O6U3 |
Gauss code of K* | O1O2O3U4O5O4U1U6U2U3O6U5 |
Gauss code of -K* | O1O2O3U4O5U1U2U5U3O6O4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 0 2 2 1],[ 3 0 0 2 3 3 1],[ 2 0 0 1 2 2 0],[ 0 -2 -1 0 1 2 1],[-2 -3 -2 -1 0 1 1],[-2 -3 -2 -2 -1 0 1],[-1 -1 0 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 0 -2 -3],[-2 0 1 1 -1 -2 -3],[-2 -1 0 1 -2 -2 -3],[-1 -1 -1 0 -1 0 -1],[ 0 1 2 1 0 -1 -2],[ 2 2 2 0 1 0 0],[ 3 3 3 1 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,0,2,3,-1,-1,1,2,3,-1,2,2,3,1,0,1,1,2,0] |
Phi over symmetry | [-3,-2,0,1,2,2,0,2,1,3,3,1,0,2,2,1,1,2,-1,-1,1] |
Phi of -K | [-3,-2,0,1,2,2,1,1,3,2,2,1,3,2,2,0,0,1,2,2,1] |
Phi of K* | [-2,-2,-1,0,2,3,-1,2,0,2,2,2,1,2,2,0,3,3,1,1,1] |
Phi of -K* | [-3,-2,0,1,2,2,0,2,1,3,3,1,0,2,2,1,1,2,-1,-1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2-8w^3z+25w^2z+19w |
Inner characteristic polynomial | t^6+41t^4+17t^2+1 |
Outer characteristic polynomial | t^7+63t^5+60t^3+12t |
Flat arrow polynomial | 8*K1**3 - 2*K1**2 - 6*K1*K2 - 3*K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial | -256*K1**4*K2**2 + 96*K1**4*K2 - 368*K1**4 + 128*K1**3*K2**3*K3 + 800*K1**3*K2*K3 - 192*K1**3*K3 - 1088*K1**2*K2**4 + 1824*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7472*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 5464*K1**2*K2 - 784*K1**2*K3**2 - 3404*K1**2 - 384*K1*K2**4*K3 + 2016*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 192*K1*K2*K3*K4 + 6864*K1*K2*K3 - 96*K1*K2*K4*K5 + 1128*K1*K3*K4 + 8*K1*K4*K5 + 24*K1*K5*K6 - 192*K2**6 + 384*K2**4*K4 - 1944*K2**4 - 32*K2**3*K6 - 992*K2**2*K3**2 - 248*K2**2*K4**2 + 1312*K2**2*K4 - 1606*K2**2 + 272*K2*K3*K5 + 88*K2*K4*K6 - 1744*K3**2 - 454*K4**2 - 20*K5**2 - 18*K6**2 + 2708 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]] |
If K is slice | False |