Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.739

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,2,-1,-1,-1,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.739']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370']
Outer characteristic polynomial of the knot is: t^7+60t^5+60t^3+15t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.739']
2-strand cable arrow polynomial of the knot is: -448*K1**2*K2**4 + 1824*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 6736*K1**2*K2**2 - 768*K1**2*K2*K4 + 6648*K1**2*K2 - 192*K1**2*K4**2 - 4536*K1**2 + 352*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 96*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5640*K1*K2*K3 + 832*K1*K3*K4 + 184*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1376*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 1640*K2**2*K4 - 2736*K2**2 + 128*K2*K3*K5 - 1192*K3**2 - 520*K4**2 - 56*K5**2 + 2998
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.739']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16996', 'vk6.17238', 'vk6.20527', 'vk6.21923', 'vk6.23404', 'vk6.23713', 'vk6.27981', 'vk6.29450', 'vk6.35468', 'vk6.35914', 'vk6.39385', 'vk6.41574', 'vk6.42905', 'vk6.43205', 'vk6.45962', 'vk6.47639', 'vk6.55171', 'vk6.55416', 'vk6.57397', 'vk6.58572', 'vk6.59554', 'vk6.59893', 'vk6.62066', 'vk6.63051', 'vk6.64975', 'vk6.65184', 'vk6.66943', 'vk6.67802', 'vk6.68268', 'vk6.68423', 'vk6.69557', 'vk6.70253']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U4U3O6U5U6
R3 orbit {'O1O2O3O4U2O5U1U4U3O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6O5U2U1U4O6U3
Gauss code of K* O1O2O3U4O5O4U1U6U3U2O6U5
Gauss code of -K* O1O2O3U4O5U2U1U5U3O6O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 1 2 1],[ 3 0 0 3 2 3 1],[ 2 0 0 2 1 2 0],[-1 -3 -2 0 0 2 1],[-1 -2 -1 0 0 1 1],[-2 -3 -2 -2 -1 0 1],[-1 -1 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 1 -1 -2 -2 -3],[-1 -1 0 -1 -1 0 -1],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 2 2 0 1 2 0 0],[ 3 3 1 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,-1,1,2,2,3,1,1,0,1,0,1,2,2,3,0]
Phi over symmetry [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,2,-1,-1,-1,0,1,2]
Phi of -K [-3,-2,1,1,1,2,1,1,2,3,2,1,2,3,2,0,-1,-1,-1,0,2]
Phi of K* [-2,-1,-1,-1,2,3,-1,0,2,2,2,0,1,1,1,1,2,2,3,3,1]
Phi of -K* [-3,-2,1,1,1,2,0,1,2,3,3,0,1,2,2,-1,-1,-1,0,1,2]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-8w^3z+27w^2z+15w
Inner characteristic polynomial t^6+40t^4+20t^2
Outer characteristic polynomial t^7+60t^5+60t^3+15t
Flat arrow polynomial 4*K1**3 - 2*K1*K2 - 2*K1 + 1
2-strand cable arrow polynomial -448*K1**2*K2**4 + 1824*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 6736*K1**2*K2**2 - 768*K1**2*K2*K4 + 6648*K1**2*K2 - 192*K1**2*K4**2 - 4536*K1**2 + 352*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 96*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5640*K1*K2*K3 + 832*K1*K3*K4 + 184*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1376*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 1640*K2**2*K4 - 2736*K2**2 + 128*K2*K3*K5 - 1192*K3**2 - 520*K4**2 - 56*K5**2 + 2998
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact