Gauss code |
O1O2O3O4U2O5U1U6U4O6U5U3 |
R3 orbit |
{'O1O2O3O4U2O5U1U6U4O6U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5O6U1U6U4O5U3 |
Gauss code of K* |
O1O2O3U2O4O5U1U6U5U3O6U4 |
Gauss code of -K* |
O1O2O3U4O5U1U6U5U3O6O4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 2 2 -1],[ 3 0 0 4 2 2 2],[ 2 0 0 2 1 1 1],[-2 -4 -2 0 0 1 -3],[-2 -2 -1 0 0 0 -2],[-2 -2 -1 -1 0 0 -2],[ 1 -2 -1 3 2 2 0]] |
Primitive based matrix |
[[ 0 2 2 2 -1 -2 -3],[-2 0 1 0 -3 -2 -4],[-2 -1 0 0 -2 -1 -2],[-2 0 0 0 -2 -1 -2],[ 1 3 2 2 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 2 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,1,2,3,-1,0,3,2,4,0,2,1,2,2,1,2,1,2,0] |
Phi over symmetry |
[-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,2,2,3,0,-1,0] |
Phi of -K |
[-3,-2,-1,2,2,2,1,0,1,3,3,0,2,3,3,0,1,1,-1,0,0] |
Phi of K* |
[-2,-2,-2,1,2,3,-1,0,1,3,3,0,0,2,1,1,3,3,0,0,1] |
Phi of -K* |
[-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,2,2,3,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+53t^4+14t^2 |
Outer characteristic polynomial |
t^7+79t^5+58t^3+3t |
Flat arrow polynomial |
8*K1**3 - 12*K1**2 - 10*K1*K2 - K1 + 6*K2 + 3*K3 + 7 |
2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 1504*K1**4*K2 - 3664*K1**4 - 128*K1**3*K2**2*K3 + 1056*K1**3*K2*K3 + 32*K1**3*K3*K4 - 640*K1**3*K3 + 640*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7536*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 11064*K1**2*K2 - 1040*K1**2*K3**2 - 32*K1**2*K4**2 - 7184*K1**2 + 576*K1*K2**3*K3 - 1664*K1*K2**2*K3 - 384*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 10256*K1*K2*K3 + 1648*K1*K3*K4 + 128*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1456*K2**4 - 64*K2**3*K6 - 880*K2**2*K3**2 - 168*K2**2*K4**2 + 2200*K2**2*K4 - 6210*K2**2 - 64*K2*K3**2*K4 + 888*K2*K3*K5 + 152*K2*K4*K6 - 32*K3**4 + 64*K3**2*K6 - 3252*K3**2 - 880*K4**2 - 204*K5**2 - 46*K6**2 + 6342 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice |
False |