Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.744

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,-1,1,4,2,4,1,2,0,1,2,1,3,2,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.744']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+94t^5+114t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.744']
2-strand cable arrow polynomial of the knot is: -448*K1**4*K2**2 + 640*K1**4*K2 - 976*K1**4 + 128*K1**3*K2**3*K3 - 384*K1**3*K2**2*K3 + 1056*K1**3*K2*K3 - 896*K1**3*K3 - 320*K1**2*K2**4 + 3136*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 10176*K1**2*K2**2 - 640*K1**2*K2*K4 + 8784*K1**2*K2 - 400*K1**2*K3**2 - 5640*K1**2 + 1792*K1*K2**3*K3 - 1408*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 8392*K1*K2*K3 + 336*K1*K3*K4 + 56*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 2864*K2**4 - 1024*K2**2*K3**2 - 16*K2**2*K4**2 + 1664*K2**2*K4 - 2502*K2**2 + 408*K2*K3*K5 + 8*K2*K4*K6 - 1876*K3**2 - 216*K4**2 - 60*K5**2 - 2*K6**2 + 3926
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.744']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4725', 'vk6.5044', 'vk6.6254', 'vk6.6702', 'vk6.8222', 'vk6.8662', 'vk6.9606', 'vk6.9931', 'vk6.20295', 'vk6.21628', 'vk6.27587', 'vk6.29139', 'vk6.39009', 'vk6.41257', 'vk6.45773', 'vk6.47450', 'vk6.48757', 'vk6.48958', 'vk6.49558', 'vk6.49772', 'vk6.50767', 'vk6.50971', 'vk6.51246', 'vk6.51453', 'vk6.57154', 'vk6.58338', 'vk6.61776', 'vk6.62895', 'vk6.66775', 'vk6.67651', 'vk6.69419', 'vk6.70141']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U6U5O6U3U4
R3 orbit {'O1O2O3O4U2O5U1U6U5O6U3U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U2O5U6U5U4O6U3
Gauss code of K* O1O2O3U2O4O5U1U6U4U5O6U3
Gauss code of -K* O1O2O3U1O4U5U6U4U3O5O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 3 2 -1],[ 3 0 0 3 4 1 2],[ 2 0 0 1 2 0 2],[-1 -3 -1 0 1 1 -2],[-3 -4 -2 -1 0 1 -4],[-2 -1 0 -1 -1 0 -2],[ 1 -2 -2 2 4 2 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 1 -1 -4 -2 -4],[-2 -1 0 -1 -2 0 -1],[-1 1 1 0 -2 -1 -3],[ 1 4 2 2 0 -2 -2],[ 2 2 0 1 2 0 0],[ 3 4 1 3 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,-1,1,4,2,4,1,2,0,1,2,1,3,2,2,0]
Phi over symmetry [-3,-2,-1,1,2,3,-1,1,4,2,4,1,2,0,1,2,1,3,2,2,0]
Phi of -K [-3,-2,-1,1,2,3,1,0,1,4,2,-1,2,4,3,0,1,0,0,1,2]
Phi of K* [-3,-2,-1,1,2,3,2,1,0,3,2,0,1,4,4,0,2,1,-1,0,1]
Phi of -K* [-3,-2,-1,1,2,3,0,2,3,1,4,2,1,0,2,2,2,4,1,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 8z^2+29z+27
Enhanced Jones-Krushkal polynomial 8w^3z^2+29w^2z+27w
Inner characteristic polynomial t^6+66t^4+66t^2+4
Outer characteristic polynomial t^7+94t^5+114t^3+14t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -448*K1**4*K2**2 + 640*K1**4*K2 - 976*K1**4 + 128*K1**3*K2**3*K3 - 384*K1**3*K2**2*K3 + 1056*K1**3*K2*K3 - 896*K1**3*K3 - 320*K1**2*K2**4 + 3136*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 10176*K1**2*K2**2 - 640*K1**2*K2*K4 + 8784*K1**2*K2 - 400*K1**2*K3**2 - 5640*K1**2 + 1792*K1*K2**3*K3 - 1408*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 8392*K1*K2*K3 + 336*K1*K3*K4 + 56*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 2864*K2**4 - 1024*K2**2*K3**2 - 16*K2**2*K4**2 + 1664*K2**2*K4 - 2502*K2**2 + 408*K2*K3*K5 + 8*K2*K4*K6 - 1876*K3**2 - 216*K4**2 - 60*K5**2 - 2*K6**2 + 3926
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice True
Contact