Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.748

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,2,3,1,1,2,2,-1,-1,-1,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.748']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 2*K1*K2 - 2*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.520', '6.682', '6.706', '6.748', '6.1331']
Outer characteristic polynomial of the knot is: t^7+64t^5+99t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.748']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 864*K1**4*K2 - 1536*K1**4 + 192*K1**3*K2*K3 - 256*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 - 5712*K1**2*K2**2 - 192*K1**2*K2*K4 + 8096*K1**2*K2 - 5320*K1**2 + 288*K1*K2**3*K3 - 640*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4936*K1*K2*K3 + 144*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 560*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 576*K2**2*K4 - 3464*K2**2 + 24*K2*K3*K5 - 1096*K3**2 - 124*K4**2 + 3578
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.748']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11429', 'vk6.11724', 'vk6.12739', 'vk6.13082', 'vk6.20335', 'vk6.21677', 'vk6.27636', 'vk6.29181', 'vk6.31180', 'vk6.31521', 'vk6.32344', 'vk6.32761', 'vk6.39070', 'vk6.41328', 'vk6.45822', 'vk6.47494', 'vk6.52194', 'vk6.52451', 'vk6.53021', 'vk6.53337', 'vk6.57194', 'vk6.58410', 'vk6.61805', 'vk6.62930', 'vk6.63764', 'vk6.63874', 'vk6.64188', 'vk6.64374', 'vk6.66809', 'vk6.67678', 'vk6.69446', 'vk6.70169']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U3U6U1O6U4U5
R3 orbit {'O1O2O3O4U2O5U3U6U1O6U4U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1O6U4U6U2O5U3
Gauss code of K* O1O2O3U2O4O5U3U6U1U4O6U5
Gauss code of -K* O1O2O3U4O5U6U3U5U1O4O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 2 3 -1],[ 1 0 -1 1 2 2 1],[ 2 1 0 1 2 2 2],[ 1 -1 -1 0 1 2 1],[-2 -2 -2 -1 0 1 -2],[-3 -2 -2 -2 -1 0 -3],[ 1 -1 -2 -1 2 3 0]]
Primitive based matrix [[ 0 3 2 -1 -1 -1 -2],[-3 0 -1 -2 -2 -3 -2],[-2 1 0 -1 -2 -2 -2],[ 1 2 1 0 -1 1 -1],[ 1 2 2 1 0 1 -1],[ 1 3 2 -1 -1 0 -2],[ 2 2 2 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,1,1,1,2,1,2,2,3,2,1,2,2,2,1,-1,1,-1,1,2]
Phi over symmetry [-3,-2,1,1,1,2,0,1,2,2,3,1,1,2,2,-1,-1,-1,1,0,0]
Phi of -K [-2,-1,-1,-1,2,3,-1,0,0,2,3,1,1,1,1,-1,1,2,2,2,0]
Phi of K* [-3,-2,1,1,1,2,0,1,2,2,3,1,1,2,2,-1,-1,-1,1,0,0]
Phi of -K* [-2,-1,-1,-1,2,3,1,1,2,2,2,-1,1,1,2,1,2,2,2,3,1]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2-2w^3z+25w^2z+31w
Inner characteristic polynomial t^6+44t^4+41t^2+1
Outer characteristic polynomial t^7+64t^5+99t^3+10t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 2*K1*K2 - 2*K1 + 2*K2 + 3
2-strand cable arrow polynomial -256*K1**4*K2**2 + 864*K1**4*K2 - 1536*K1**4 + 192*K1**3*K2*K3 - 256*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 - 5712*K1**2*K2**2 - 192*K1**2*K2*K4 + 8096*K1**2*K2 - 5320*K1**2 + 288*K1*K2**3*K3 - 640*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4936*K1*K2*K3 + 144*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 560*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 576*K2**2*K4 - 3464*K2**2 + 24*K2*K3*K5 - 1096*K3**2 - 124*K4**2 + 3578
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact