Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.749

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,2,3,3,2,1,1,2,1,1,-1,1,-1,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.749']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+62t^5+105t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.749']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 160*K1**4*K2 - 2032*K1**4 + 32*K1**3*K2*K3 - 160*K1**3*K3 + 128*K1**2*K2**3 - 3488*K1**2*K2**2 - 128*K1**2*K2*K4 + 6264*K1**2*K2 - 560*K1**2*K3**2 - 48*K1**2*K4**2 - 3660*K1**2 - 832*K1*K2**2*K3 + 4992*K1*K2*K3 + 968*K1*K3*K4 + 40*K1*K4*K5 - 224*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 560*K2**2*K4 - 3086*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1544*K3**2 - 344*K4**2 - 28*K5**2 - 2*K6**2 + 3094
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.749']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11521', 'vk6.11852', 'vk6.12867', 'vk6.13174', 'vk6.20360', 'vk6.21703', 'vk6.27660', 'vk6.29206', 'vk6.31296', 'vk6.31691', 'vk6.32450', 'vk6.32865', 'vk6.39102', 'vk6.41358', 'vk6.45854', 'vk6.47517', 'vk6.52304', 'vk6.52568', 'vk6.53144', 'vk6.53448', 'vk6.57219', 'vk6.58442', 'vk6.61829', 'vk6.62962', 'vk6.63813', 'vk6.63945', 'vk6.64255', 'vk6.64451', 'vk6.66832', 'vk6.67702', 'vk6.69468', 'vk6.70192']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U3U6U1O6U5U4
R3 orbit {'O1O2O3O4U2O5U3U6U1O6U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5O6U4U6U2O5U3
Gauss code of K* O1O2O3U2O4O5U3U6U1U5O6U4
Gauss code of -K* O1O2O3U4O5U6U3U5U1O6O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 3 2 -1],[ 1 0 -1 1 3 1 1],[ 2 1 0 1 2 1 2],[ 1 -1 -1 0 2 1 1],[-3 -3 -2 -2 0 0 -3],[-2 -1 -1 -1 0 0 -2],[ 1 -1 -2 -1 3 2 0]]
Primitive based matrix [[ 0 3 2 -1 -1 -1 -2],[-3 0 0 -2 -3 -3 -2],[-2 0 0 -1 -1 -2 -1],[ 1 2 1 0 -1 1 -1],[ 1 3 1 1 0 1 -1],[ 1 3 2 -1 -1 0 -2],[ 2 2 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,1,1,1,2,0,2,3,3,2,1,1,2,1,1,-1,1,-1,1,2]
Phi over symmetry [-3,-2,1,1,1,2,0,2,3,3,2,1,1,2,1,1,-1,1,-1,1,2]
Phi of -K [-2,-1,-1,-1,2,3,-1,0,0,3,3,1,1,1,1,-1,2,1,2,2,1]
Phi of K* [-3,-2,1,1,1,2,1,1,1,2,3,1,2,2,3,-1,-1,-1,1,0,0]
Phi of -K* [-2,-1,-1,-1,2,3,1,1,2,1,2,-1,1,1,2,1,1,3,2,3,0]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+42t^4+43t^2
Outer characteristic polynomial t^7+62t^5+105t^3+4t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 160*K1**4*K2 - 2032*K1**4 + 32*K1**3*K2*K3 - 160*K1**3*K3 + 128*K1**2*K2**3 - 3488*K1**2*K2**2 - 128*K1**2*K2*K4 + 6264*K1**2*K2 - 560*K1**2*K3**2 - 48*K1**2*K4**2 - 3660*K1**2 - 832*K1*K2**2*K3 + 4992*K1*K2*K3 + 968*K1*K3*K4 + 40*K1*K4*K5 - 224*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 560*K2**2*K4 - 3086*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1544*K3**2 - 344*K4**2 - 28*K5**2 - 2*K6**2 + 3094
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact