Gauss code |
O1O2O3O4O5O6U2U3U6U4U1U5 |
R3 orbit |
{'O1O2O3O4O5O6U2U3U6U4U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U6U3U1U4U5 |
Gauss code of K* |
O1O2O3O4O5O6U5U1U2U4U6U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U1U3U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -4 -2 1 4 2],[ 1 0 -3 -1 2 4 2],[ 4 3 0 1 3 4 2],[ 2 1 -1 0 2 3 1],[-1 -2 -3 -2 0 1 0],[-4 -4 -4 -3 -1 0 0],[-2 -2 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 4 2 1 -1 -2 -4],[-4 0 0 -1 -4 -3 -4],[-2 0 0 0 -2 -1 -2],[-1 1 0 0 -2 -2 -3],[ 1 4 2 2 0 -1 -3],[ 2 3 1 2 1 0 -1],[ 4 4 2 3 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,1,2,4,0,1,4,3,4,0,2,1,2,2,2,3,1,3,1] |
Phi over symmetry |
[-4,-2,-1,1,2,4,0,1,4,3,4,0,2,1,2,2,2,3,1,3,1] |
Phi of -K |
[-4,-2,-1,1,2,4,1,0,2,4,4,0,1,3,3,0,1,1,1,2,2] |
Phi of K* |
[-4,-2,-1,1,2,4,2,2,1,3,4,1,1,3,4,0,1,2,0,0,1] |
Phi of -K* |
[-4,-2,-1,1,2,4,1,3,3,2,4,1,2,1,3,2,2,4,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+79t^4+31t^2+1 |
Outer characteristic polynomial |
t^7+121t^5+115t^3+7t |
Flat arrow polynomial |
12*K1**3 + 4*K1**2*K2 - 4*K1**2 - 8*K1*K2 - 4*K1*K3 - 5*K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 736*K1**4*K2 - 1136*K1**4 + 128*K1**3*K2**3*K3 + 1120*K1**3*K2*K3 - 544*K1**3*K3 - 832*K1**2*K2**4 + 2816*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 9424*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 608*K1**2*K2*K4 + 7864*K1**2*K2 - 1040*K1**2*K3**2 - 32*K1**2*K3*K5 - 4808*K1**2 + 3232*K1*K2**3*K3 + 352*K1*K2**2*K3*K4 - 2848*K1*K2**2*K3 - 640*K1*K2**2*K5 + 288*K1*K2*K3**3 - 608*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 9560*K1*K2*K3 - 32*K1*K3**2*K5 + 1296*K1*K3*K4 + 80*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 - 384*K2**4*K3**2 - 32*K2**4*K4**2 + 832*K2**4*K4 - 4208*K2**4 + 640*K2**3*K3*K5 + 32*K2**3*K4*K6 - 160*K2**3*K6 - 128*K2**2*K3**4 + 32*K2**2*K3**2*K4 + 128*K2**2*K3**2*K6 - 3056*K2**2*K3**2 - 64*K2**2*K3*K7 - 528*K2**2*K4**2 + 3200*K2**2*K4 - 208*K2**2*K5**2 - 48*K2**2*K6**2 - 2570*K2**2 - 128*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1848*K2*K3*K5 + 208*K2*K4*K6 + 32*K2*K5*K7 + 8*K2*K6*K8 - 160*K3**4 + 176*K3**2*K6 - 2484*K3**2 + 8*K3*K4*K7 - 664*K4**2 - 280*K5**2 - 54*K6**2 - 4*K7**2 - 2*K8**2 + 4208 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |