Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.755

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-2,1,1,1,3,1,0,1,2,0,1,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.755']
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870']
Outer characteristic polynomial of the knot is: t^7+53t^5+52t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.755']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 384*K1**4*K2 - 1792*K1**4 + 160*K1**3*K2*K3 - 800*K1**3*K3 + 64*K1**2*K2**3 - 2000*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 6448*K1**2*K2 - 608*K1**2*K3**2 - 32*K1**2*K3*K5 - 5136*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5056*K1*K2*K3 + 872*K1*K3*K4 + 96*K1*K4*K5 - 136*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 600*K2**2*K4 - 3900*K2**2 + 256*K2*K3*K5 + 32*K2*K4*K6 - 1844*K3**2 - 406*K4**2 - 84*K5**2 - 4*K6**2 + 3860
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.755']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3568', 'vk6.3590', 'vk6.3604', 'vk6.3811', 'vk6.3829', 'vk6.3844', 'vk6.3862', 'vk6.6977', 'vk6.6991', 'vk6.7010', 'vk6.7024', 'vk6.7195', 'vk6.7213', 'vk6.7227', 'vk6.15329', 'vk6.15349', 'vk6.15454', 'vk6.15474', 'vk6.33974', 'vk6.34018', 'vk6.34030', 'vk6.34429', 'vk6.48214', 'vk6.48228', 'vk6.48372', 'vk6.49947', 'vk6.49968', 'vk6.49982', 'vk6.53994', 'vk6.54014', 'vk6.54048', 'vk6.54494']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U4U6U5O6U1U3
R3 orbit {'O1O2O3O4U2O5U4U6U5O6U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U4O5U6U5U1O6U3
Gauss code of K* O1O2O3U2O4O5U4U6U5U1O6U3
Gauss code of -K* O1O2O3U1O4U3U5U4U6O5O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 2 0 2 -1],[ 1 0 -1 2 0 2 0],[ 2 1 0 2 1 1 2],[-2 -2 -2 0 -1 2 -3],[ 0 0 -1 1 0 1 -1],[-2 -2 -1 -2 -1 0 -2],[ 1 0 -2 3 1 2 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 2 -1 -2 -3 -2],[-2 -2 0 -1 -2 -2 -1],[ 0 1 1 0 0 -1 -1],[ 1 2 2 0 0 0 -1],[ 1 3 2 1 0 0 -2],[ 2 2 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,-2,1,2,3,2,1,2,2,1,0,1,1,0,1,2]
Phi over symmetry [-2,-2,0,1,1,2,-2,1,1,1,3,1,0,1,2,0,1,1,0,-1,0]
Phi of -K [-2,-1,-1,0,2,2,-1,0,1,2,3,0,0,0,1,1,1,1,1,1,-2]
Phi of K* [-2,-2,0,1,1,2,-2,1,1,1,3,1,0,1,2,0,1,1,0,-1,0]
Phi of -K* [-2,-1,-1,0,2,2,1,2,1,1,2,0,0,2,2,1,2,3,1,1,-2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+39t^4+33t^2+1
Outer characteristic polynomial t^7+53t^5+52t^3+5t
Flat arrow polynomial -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -64*K1**4*K2**2 + 384*K1**4*K2 - 1792*K1**4 + 160*K1**3*K2*K3 - 800*K1**3*K3 + 64*K1**2*K2**3 - 2000*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 160*K1**2*K2*K4 + 6448*K1**2*K2 - 608*K1**2*K3**2 - 32*K1**2*K3*K5 - 5136*K1**2 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5056*K1*K2*K3 + 872*K1*K3*K4 + 96*K1*K4*K5 - 136*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 600*K2**2*K4 - 3900*K2**2 + 256*K2*K3*K5 + 32*K2*K4*K6 - 1844*K3**2 - 406*K4**2 - 84*K5**2 - 4*K6**2 + 3860
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}]]
If K is slice False
Contact