Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,3,2,3,0,2,1,1,2,2,2,2,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.759'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370'] |
Outer characteristic polynomial of the knot is: t^7+66t^5+91t^3+24t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.759'] |
2-strand cable arrow polynomial of the knot is: -576*K1**2*K2**4 + 832*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4016*K1**2*K2**2 - 160*K1**2*K2*K4 + 4456*K1**2*K2 - 64*K1**2*K4**2 - 3432*K1**2 + 608*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 288*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4232*K1*K2*K3 + 464*K1*K3*K4 + 120*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 1920*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 2080*K2**2*K4 - 2072*K2**2 + 144*K2*K3*K5 - 1136*K3**2 - 528*K4**2 - 48*K5**2 + 2574 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.759'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17540', 'vk6.17545', 'vk6.17597', 'vk6.17600', 'vk6.24048', 'vk6.24053', 'vk6.24140', 'vk6.24143', 'vk6.36324', 'vk6.36333', 'vk6.36395', 'vk6.36398', 'vk6.43449', 'vk6.43454', 'vk6.43496', 'vk6.43498', 'vk6.55630', 'vk6.55643', 'vk6.55657', 'vk6.55666', 'vk6.60148', 'vk6.60158', 'vk6.60205', 'vk6.60216', 'vk6.65331', 'vk6.65346', 'vk6.65366', 'vk6.65376', 'vk6.68501', 'vk6.68510', 'vk6.68525', 'vk6.68532'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2O5U6U4U3O6U1U5 |
R3 orbit | {'O1O2O3O4U2O5U6U4U3O6U1U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U4O6U2U1U6O5U3 |
Gauss code of K* | O1O2O3U1O4O5U4U6U3U2O6U5 |
Gauss code of -K* | O1O2O3U4O5U2U1U5U6O4O6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -2 1 1 3 -2],[ 1 0 -2 2 2 3 -1],[ 2 2 0 2 1 2 0],[-1 -2 -2 0 0 1 -2],[-1 -2 -1 0 0 0 -1],[-3 -3 -2 -1 0 0 -3],[ 2 1 0 2 1 3 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -2 -2],[-3 0 0 -1 -3 -2 -3],[-1 0 0 0 -2 -1 -1],[-1 1 0 0 -2 -2 -2],[ 1 3 2 2 0 -2 -1],[ 2 2 1 2 2 0 0],[ 2 3 1 2 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,2,2,0,1,3,2,3,0,2,1,1,2,2,2,2,1,0] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,1,3,2,3,0,2,1,1,2,2,2,2,1,0] |
Phi of -K | [-2,-2,-1,1,1,3,0,-1,1,2,3,0,1,2,2,0,0,1,0,1,2] |
Phi of K* | [-3,-1,-1,1,2,2,1,2,1,2,3,0,0,1,1,0,2,2,0,-1,0] |
Phi of -K* | [-2,-2,-1,1,1,3,0,1,1,2,3,2,1,2,2,2,2,3,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | 6z^2+19z+15 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+10w^3z^2-8w^3z+27w^2z+15w |
Inner characteristic polynomial | t^6+46t^4+51t^2+9 |
Outer characteristic polynomial | t^7+66t^5+91t^3+24t |
Flat arrow polynomial | 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial | -576*K1**2*K2**4 + 832*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4016*K1**2*K2**2 - 160*K1**2*K2*K4 + 4456*K1**2*K2 - 64*K1**2*K4**2 - 3432*K1**2 + 608*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 288*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4232*K1*K2*K3 + 464*K1*K3*K4 + 120*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 1920*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 2080*K2**2*K4 - 2072*K2**2 + 144*K2*K3*K5 - 1136*K3**2 - 528*K4**2 - 48*K5**2 + 2574 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |