Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.76

Min(phi) over symmetries of the knot is: [-4,-2,-1,2,2,3,1,0,3,4,3,0,2,3,2,1,1,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.76']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+109t^5+65t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.76']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 224*K1**4*K2 - 272*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 + 160*K1**2*K2**3 - 1600*K1**2*K2**2 - 288*K1**2*K2*K4 + 1912*K1**2*K2 - 144*K1**2*K3**2 - 1464*K1**2 + 64*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 320*K1*K2**2*K3 + 160*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 1968*K1*K2*K3 - 32*K1*K2*K4*K5 + 416*K1*K3*K4 + 168*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**4 - 224*K2**2*K3**2 - 328*K2**2*K4**2 + 712*K2**2*K4 - 144*K2**2*K5**2 - 8*K2**2*K6**2 - 1306*K2**2 + 384*K2*K3*K5 + 96*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 668*K3**2 - 394*K4**2 - 160*K5**2 - 14*K6**2 - 4*K7**2 - 2*K8**2 + 1298
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.76']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11421', 'vk6.11712', 'vk6.12727', 'vk6.13076', 'vk6.18074', 'vk6.18412', 'vk6.22035', 'vk6.22657', 'vk6.22742', 'vk6.24521', 'vk6.28091', 'vk6.29537', 'vk6.31162', 'vk6.31499', 'vk6.34603', 'vk6.34681', 'vk6.36658', 'vk6.39500', 'vk6.41714', 'vk6.42300', 'vk6.42331', 'vk6.43936', 'vk6.46100', 'vk6.47752', 'vk6.52175', 'vk6.52415', 'vk6.54601', 'vk6.54639', 'vk6.55894', 'vk6.58663', 'vk6.59083', 'vk6.59124', 'vk6.60418', 'vk6.63125', 'vk6.63746', 'vk6.63850', 'vk6.64673', 'vk6.65528', 'vk6.68013', 'vk6.68610']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U2U3U6U5U1U4
R3 orbit {'O1O2O3O4O5O6U2U3U6U5U1U4', 'O1O2O3O4O5U1U2U5U6U3O6U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5O6U3U6U2U1U4U5
Gauss code of K* O1O2O3O4O5O6U5U1U2U6U4U3
Gauss code of -K* O1O2O3O4O5O6U4U3U1U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -4 -2 3 2 2],[ 1 0 -3 -1 3 2 2],[ 4 3 0 1 4 3 2],[ 2 1 -1 0 3 2 1],[-3 -3 -4 -3 0 0 0],[-2 -2 -3 -2 0 0 0],[-2 -2 -2 -1 0 0 0]]
Primitive based matrix [[ 0 3 2 2 -1 -2 -4],[-3 0 0 0 -3 -3 -4],[-2 0 0 0 -2 -1 -2],[-2 0 0 0 -2 -2 -3],[ 1 3 2 2 0 -1 -3],[ 2 3 1 2 1 0 -1],[ 4 4 2 3 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-2,1,2,4,0,0,3,3,4,0,2,1,2,2,2,3,1,3,1]
Phi over symmetry [-4,-2,-1,2,2,3,1,0,3,4,3,0,2,3,2,1,1,1,0,1,1]
Phi of -K [-4,-2,-1,2,2,3,1,0,3,4,3,0,2,3,2,1,1,1,0,1,1]
Phi of K* [-3,-2,-2,1,2,4,1,1,1,2,3,0,1,2,3,1,3,4,0,0,1]
Phi of -K* [-4,-2,-1,2,2,3,1,3,2,3,4,1,1,2,3,2,2,3,0,0,0]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t^2+t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2+18w^2z+17w
Inner characteristic polynomial t^6+71t^4+34t^2+1
Outer characteristic polynomial t^7+109t^5+65t^3+4t
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -256*K1**4*K2**2 + 224*K1**4*K2 - 272*K1**4 + 384*K1**3*K2*K3 - 224*K1**3*K3 + 160*K1**2*K2**3 - 1600*K1**2*K2**2 - 288*K1**2*K2*K4 + 1912*K1**2*K2 - 144*K1**2*K3**2 - 1464*K1**2 + 64*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 320*K1*K2**2*K3 + 160*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 1968*K1*K2*K3 - 32*K1*K2*K4*K5 + 416*K1*K3*K4 + 168*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**4 - 224*K2**2*K3**2 - 328*K2**2*K4**2 + 712*K2**2*K4 - 144*K2**2*K5**2 - 8*K2**2*K6**2 - 1306*K2**2 + 384*K2*K3*K5 + 96*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 668*K3**2 - 394*K4**2 - 160*K5**2 - 14*K6**2 - 4*K7**2 - 2*K8**2 + 1298
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact