Gauss code |
O1O2O3O4U2O5U6U5U3O6U1U4 |
R3 orbit |
{'O1O2O3O4U2O5U6U5U3O6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U4O5U2U6U5O6U3 |
Gauss code of K* |
O1O2O3U1O4O5U4U6U3U5O6U2 |
Gauss code of -K* |
O1O2O3U2O4U5U1U4U6O5O6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 1 3 1 -2],[ 1 0 -1 2 3 1 -1],[ 2 1 0 1 2 0 1],[-1 -2 -1 0 0 0 -2],[-3 -3 -2 0 0 1 -4],[-1 -1 0 0 -1 0 -1],[ 2 1 -1 2 4 1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 1 0 -3 -2 -4],[-1 -1 0 0 -1 0 -1],[-1 0 0 0 -2 -1 -2],[ 1 3 1 2 0 -1 -1],[ 2 2 0 1 1 0 1],[ 2 4 1 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,2,2,-1,0,3,2,4,0,1,0,1,2,1,2,1,1,-1] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,0,3,2,4,0,1,0,1,2,1,2,1,1,-1] |
Phi of -K |
[-2,-2,-1,1,1,3,-1,0,2,3,3,0,1,2,1,0,1,1,0,2,3] |
Phi of K* |
[-3,-1,-1,1,2,2,2,3,1,1,3,0,0,1,2,1,2,3,0,0,-1] |
Phi of -K* |
[-2,-2,-1,1,1,3,-1,1,1,2,4,1,0,1,2,1,2,3,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
13z+27 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+17w^2z+27w |
Inner characteristic polynomial |
t^6+44t^4+20t^2 |
Outer characteristic polynomial |
t^7+64t^5+52t^3 |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 6*K1*K2 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 960*K1**4*K2**2 + 1632*K1**4*K2 - 2672*K1**4 + 288*K1**3*K2*K3 + 96*K1**3*K3*K4 - 448*K1**2*K2**4 + 1216*K1**2*K2**3 - 4320*K1**2*K2**2 + 4920*K1**2*K2 - 528*K1**2*K3**2 - 192*K1**2*K4**2 - 32*K1**2*K5**2 - 2688*K1**2 + 256*K1*K2**3*K3 + 3224*K1*K2*K3 + 952*K1*K3*K4 + 216*K1*K4*K5 + 56*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 784*K2**4 - 160*K2**2*K3**2 - 24*K2**2*K4**2 + 328*K2**2*K4 - 1828*K2**2 + 216*K2*K3*K5 + 40*K2*K4*K6 - 1164*K3**2 - 500*K4**2 - 164*K5**2 - 36*K6**2 + 2802 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |