Gauss code |
O1O2O3O4U3O5U4U6U1O6U2U5 |
R3 orbit |
{'O1O2O3O4U3O5U4U2U6U1O6U5', 'O1O2O3O4U3O5U4U6U1O6U2U5', 'O1O2O3U2O4O5U3U4U6U1O6U5'} |
R3 orbit length |
3 |
Gauss code of -K |
O1O2O3O4U5U3O6U4U6U1O5U2 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4O5U3U5U6U1O4O6U2 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 -1 0 3 -1],[ 1 0 0 -1 1 2 1],[ 0 0 0 -1 1 2 0],[ 1 1 1 0 1 1 1],[ 0 -1 -1 -1 0 1 0],[-3 -2 -2 -1 -1 0 -3],[ 1 -1 0 -1 0 3 0]] |
Primitive based matrix |
[[ 0 3 0 0 -1 -1 -1],[-3 0 -1 -2 -1 -2 -3],[ 0 1 0 -1 -1 -1 0],[ 0 2 1 0 -1 0 0],[ 1 1 1 1 0 1 1],[ 1 2 1 0 -1 0 1],[ 1 3 0 0 -1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi over symmetry |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi of -K |
[-1,-1,-1,0,0,3,-1,-1,0,0,3,-1,0,1,2,1,1,1,1,2,1] |
Phi of K* |
[-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi of -K* |
[-1,-1,-1,0,0,3,-1,-1,0,0,3,-1,0,1,2,1,1,1,1,2,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
8z+17 |
Enhanced Jones-Krushkal polynomial |
8w^2z+17w |
Inner characteristic polynomial |
t^6+26t^4+29t^2 |
Outer characteristic polynomial |
t^7+38t^5+73t^3 |
Flat arrow polynomial |
-8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 448*K1**4*K2 - 768*K1**4 + 128*K1**2*K2**3 - 800*K1**2*K2**2 + 1200*K1**2*K2 - 64*K1**2*K3**2 - 600*K1**2 + 688*K1*K2*K3 + 144*K1*K3*K4 - 96*K2**4 - 32*K2**2*K3**2 - 8*K2**2*K4**2 + 136*K2**2*K4 - 614*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 256*K3**2 - 108*K4**2 - 24*K5**2 - 2*K6**2 + 682 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {5}, {3, 4}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |