Gauss code |
O1O2O3O4U3O5U6U5U1O6U2U4 |
R3 orbit |
{'O1O2O3O4U3O5U6U5U1O6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3O5U4U6U5O6U2 |
Gauss code of K* |
O1O2O3U1O4O5U3U4U6U5O6U2 |
Gauss code of -K* |
O1O2O3U2O4U5U4U6U1O5O6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 -1 3 1 -2],[ 1 0 0 0 2 0 0],[ 0 0 0 0 2 1 -1],[ 1 0 0 0 1 0 1],[-3 -2 -2 -1 0 1 -4],[-1 0 -1 0 -1 0 -1],[ 2 0 1 -1 4 1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -2 -1 -2 -4],[-1 -1 0 -1 0 0 -1],[ 0 2 1 0 0 0 -1],[ 1 1 0 0 0 0 1],[ 1 2 0 0 0 0 0],[ 2 4 1 1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,2,1,2,4,1,0,0,1,0,0,1,0,-1,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,2,1,2,4,1,0,0,1,0,0,1,0,-1,0] |
Phi of -K |
[-2,-1,-1,0,1,3,1,2,1,2,1,0,1,2,2,1,2,3,0,1,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,1,2,3,1,0,2,2,2,1,1,1,0,1,2] |
Phi of -K* |
[-2,-1,-1,0,1,3,-1,0,1,1,4,0,0,0,1,0,0,2,1,2,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+21z+35 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+21w^2z+35w |
Inner characteristic polynomial |
t^6+30t^4+28t^2+4 |
Outer characteristic polynomial |
t^7+46t^5+49t^3+9t |
Flat arrow polynomial |
4*K1**3 - 10*K1**2 - 2*K1*K2 - 2*K1 + 5*K2 + 6 |
2-strand cable arrow polynomial |
-64*K1**6 - 64*K1**4*K2**2 + 1472*K1**4*K2 - 5008*K1**4 + 480*K1**3*K2*K3 - 1184*K1**3*K3 - 192*K1**2*K2**4 + 672*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5472*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 9824*K1**2*K2 - 1232*K1**2*K3**2 - 96*K1**2*K3*K5 - 80*K1**2*K4**2 - 4364*K1**2 + 128*K1*K2**3*K3 - 448*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6456*K1*K2*K3 + 1240*K1*K3*K4 + 56*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 424*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 488*K2**2*K4 - 3728*K2**2 + 56*K2*K3*K5 - 1596*K3**2 - 298*K4**2 - 8*K5**2 + 3968 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |