Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.792

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,1,2,3,3,1,2,2,2,0,1,1,0,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.792']
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870']
Outer characteristic polynomial of the knot is: t^7+60t^5+54t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.792']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 192*K1**4*K2**2 + 1280*K1**4*K2 - 4096*K1**4 + 608*K1**3*K2*K3 + 64*K1**3*K3*K4 - 672*K1**3*K3 + 640*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 4832*K1**2*K2**2 - 640*K1**2*K2*K4 + 9024*K1**2*K2 - 1344*K1**2*K3**2 - 304*K1**2*K4**2 - 5484*K1**2 + 160*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7480*K1*K2*K3 - 64*K1*K2*K4*K5 + 2552*K1*K3*K4 + 440*K1*K4*K5 + 16*K1*K5*K6 - 488*K2**4 - 288*K2**2*K3**2 - 48*K2**2*K4**2 + 1232*K2**2*K4 - 4876*K2**2 - 32*K2*K3**2*K4 + 464*K2*K3*K5 + 88*K2*K4*K6 + 8*K3**2*K6 - 2800*K3**2 - 1134*K4**2 - 228*K5**2 - 20*K6**2 + 5244
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.792']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20005', 'vk6.20087', 'vk6.21275', 'vk6.21367', 'vk6.27052', 'vk6.27148', 'vk6.28755', 'vk6.28835', 'vk6.38445', 'vk6.38553', 'vk6.40632', 'vk6.40748', 'vk6.45325', 'vk6.45449', 'vk6.47092', 'vk6.47189', 'vk6.56820', 'vk6.56892', 'vk6.57952', 'vk6.58028', 'vk6.61334', 'vk6.61418', 'vk6.62508', 'vk6.62573', 'vk6.66532', 'vk6.66600', 'vk6.67319', 'vk6.67389', 'vk6.69174', 'vk6.69248', 'vk6.69923', 'vk6.69987']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U1U6U3O5U2U4
R3 orbit {'O1O2O3O4U5O6U1U6U3O5U2U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U3O5U2U6U4O6U5
Gauss code of K* O1O2O3U4O5O6U1U5U3U6O4U2
Gauss code of -K* O1O2O3U2O4U5U1U6U3O5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 1 3 -2 1],[ 3 0 2 2 3 1 1],[ 0 -2 0 1 2 -1 0],[-1 -2 -1 0 0 -1 0],[-3 -3 -2 0 0 -3 0],[ 2 -1 1 1 3 0 1],[-1 -1 0 0 0 -1 0]]
Primitive based matrix [[ 0 3 1 1 0 -2 -3],[-3 0 0 0 -2 -3 -3],[-1 0 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -2],[ 0 2 0 1 0 -1 -2],[ 2 3 1 1 1 0 -1],[ 3 3 1 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,2,3,0,0,2,3,3,0,0,1,1,1,1,2,1,2,1]
Phi over symmetry [-3,-2,0,1,1,3,0,1,2,3,3,1,2,2,2,0,1,1,0,2,2]
Phi of -K [-3,-2,0,1,1,3,0,1,2,3,3,1,2,2,2,0,1,1,0,2,2]
Phi of K* [-3,-1,-1,0,2,3,2,2,1,2,3,0,0,2,2,1,2,3,1,1,0]
Phi of -K* [-3,-2,0,1,1,3,1,2,1,2,3,1,1,1,3,0,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+36t^4+25t^2+4
Outer characteristic polynomial t^7+60t^5+54t^3+10t
Flat arrow polynomial -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -192*K1**6 - 192*K1**4*K2**2 + 1280*K1**4*K2 - 4096*K1**4 + 608*K1**3*K2*K3 + 64*K1**3*K3*K4 - 672*K1**3*K3 + 640*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 4832*K1**2*K2**2 - 640*K1**2*K2*K4 + 9024*K1**2*K2 - 1344*K1**2*K3**2 - 304*K1**2*K4**2 - 5484*K1**2 + 160*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 96*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7480*K1*K2*K3 - 64*K1*K2*K4*K5 + 2552*K1*K3*K4 + 440*K1*K4*K5 + 16*K1*K5*K6 - 488*K2**4 - 288*K2**2*K3**2 - 48*K2**2*K4**2 + 1232*K2**2*K4 - 4876*K2**2 - 32*K2*K3**2*K4 + 464*K2*K3*K5 + 88*K2*K4*K6 + 8*K3**2*K6 - 2800*K3**2 - 1134*K4**2 - 228*K5**2 - 20*K6**2 + 5244
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {5}, {1, 3}, {2}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact