Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.794

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,2,2,3,0,1,1,1,1,1,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.794']
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369']
Outer characteristic polynomial of the knot is: t^7+46t^5+24t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.794']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 384*K1**4*K2**2 + 704*K1**4*K2 - 1472*K1**4 + 256*K1**3*K2*K3 - 384*K1**3*K3 + 448*K1**2*K2**3 - 2384*K1**2*K2**2 - 416*K1**2*K2*K4 + 3320*K1**2*K2 - 32*K1**2*K3**2 - 1392*K1**2 + 160*K1*K2**3*K3 - 96*K1*K2**2*K3 - 128*K1*K2**2*K5 + 2168*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 384*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 392*K2**2*K4 - 1126*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 436*K3**2 - 116*K4**2 - 20*K5**2 - 2*K6**2 + 1234
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.794']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17010', 'vk6.17252', 'vk6.19985', 'vk6.20242', 'vk6.21157', 'vk6.21546', 'vk6.23418', 'vk6.26871', 'vk6.27008', 'vk6.27461', 'vk6.28635', 'vk6.29059', 'vk6.35488', 'vk6.38306', 'vk6.38414', 'vk6.38876', 'vk6.40433', 'vk6.41076', 'vk6.42917', 'vk6.45170', 'vk6.45300', 'vk6.45641', 'vk6.47008', 'vk6.47378', 'vk6.55196', 'vk6.56720', 'vk6.56799', 'vk6.57811', 'vk6.58212', 'vk6.59579', 'vk6.61303', 'vk6.62383', 'vk6.64991', 'vk6.66416', 'vk6.66507', 'vk6.67182', 'vk6.67550', 'vk6.68275', 'vk6.69153', 'vk6.69852']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U2U6U1O5U3U4
R3 orbit {'O1O2O3O4U5O6U2U6U1O5U3U4', 'O1O2O3O4U5U1O6U2U6O5U3U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U1U2O5U4U6U3O6U5
Gauss code of K* O1O2O3U4O5O6U3U1U5U6O4U2
Gauss code of -K* O1O2O3U2O4U5U6U3U1O5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 1 3 -2 1],[ 1 0 -1 1 2 0 1],[ 2 1 0 1 2 1 1],[-1 -1 -1 0 1 -1 0],[-3 -2 -2 -1 0 -3 0],[ 2 0 -1 1 3 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 3 1 1 -1 -2 -2],[-3 0 0 -1 -2 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 -1 -1 -1],[ 1 2 1 1 0 -1 0],[ 2 2 1 1 1 0 1],[ 2 3 1 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,2,2,0,1,2,2,3,0,1,1,1,1,1,1,1,0,-1]
Phi over symmetry [-3,-1,-1,1,2,2,0,1,2,2,3,0,1,1,1,1,1,1,1,0,-1]
Phi of -K [-2,-2,-1,1,1,3,-1,0,2,2,3,1,2,2,2,1,1,2,0,1,2]
Phi of K* [-3,-1,-1,1,2,2,1,2,2,2,3,0,1,2,2,1,2,2,1,0,-1]
Phi of -K* [-2,-2,-1,1,1,3,-1,0,1,1,3,1,1,1,2,1,1,2,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^3+2t^2-t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+26t^4+8t^2
Outer characteristic polynomial t^7+46t^5+24t^3+3t
Flat arrow polynomial -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -128*K1**6 - 384*K1**4*K2**2 + 704*K1**4*K2 - 1472*K1**4 + 256*K1**3*K2*K3 - 384*K1**3*K3 + 448*K1**2*K2**3 - 2384*K1**2*K2**2 - 416*K1**2*K2*K4 + 3320*K1**2*K2 - 32*K1**2*K3**2 - 1392*K1**2 + 160*K1*K2**3*K3 - 96*K1*K2**2*K3 - 128*K1*K2**2*K5 + 2168*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 384*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 392*K2**2*K4 - 1126*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 436*K3**2 - 116*K4**2 - 20*K5**2 - 2*K6**2 + 1234
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact