Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,3,3,1,1,2,1,1,1,2,0,0,2] |
Flat knots (up to 7 crossings) with same phi are :['6.796'] |
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.573', '6.628', '6.703', '6.704', '6.723', '6.796', '6.1083', '6.1099', '6.1315'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+79t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.796'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 256*K1**4*K2**3 - 896*K1**4*K2**2 + 1504*K1**4*K2 - 2800*K1**4 + 192*K1**3*K2*K3 - 224*K1**3*K3 - 1216*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 3168*K1**2*K2**3 - 8160*K1**2*K2**2 - 544*K1**2*K2*K4 + 7424*K1**2*K2 - 112*K1**2*K3**2 - 3108*K1**2 + 1824*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 160*K1*K2**2*K5 + 5176*K1*K2*K3 + 400*K1*K3*K4 - 32*K2**6 + 160*K2**4*K4 - 2152*K2**4 - 688*K2**2*K3**2 - 104*K2**2*K4**2 + 1064*K2**2*K4 - 1432*K2**2 + 120*K2*K3*K5 - 908*K3**2 - 198*K4**2 + 2692 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.796'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19936', 'vk6.19981', 'vk6.21174', 'vk6.21250', 'vk6.26889', 'vk6.27000', 'vk6.28645', 'vk6.28726', 'vk6.38312', 'vk6.38406', 'vk6.40445', 'vk6.40589', 'vk6.45182', 'vk6.45296', 'vk6.47014', 'vk6.47078', 'vk6.56729', 'vk6.56787', 'vk6.57829', 'vk6.57921', 'vk6.61150', 'vk6.61279', 'vk6.62393', 'vk6.62472', 'vk6.66422', 'vk6.66483', 'vk6.67192', 'vk6.67276', 'vk6.69074', 'vk6.69141', 'vk6.69858', 'vk6.69900'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5O6U3U4U2O5U1U6 |
R3 orbit | {'O1O2O3O4U5O6U3U4U2O5U1U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U4O6U3U1U2O5U6 |
Gauss code of K* | O1O2O3U4O5O6U5U3U1U2O4U6 |
Gauss code of -K* | O1O2O3U4O5U2U3U1U6O4O6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 -1 1 -2 3],[ 1 0 1 0 2 -2 3],[ 0 -1 0 -1 1 -2 2],[ 1 0 1 0 1 0 1],[-1 -2 -1 -1 0 -1 0],[ 2 2 2 0 1 0 3],[-3 -3 -2 -1 0 -3 0]] |
Primitive based matrix | [[ 0 3 1 0 -1 -1 -2],[-3 0 0 -2 -1 -3 -3],[-1 0 0 -1 -1 -2 -1],[ 0 2 1 0 -1 -1 -2],[ 1 1 1 1 0 0 0],[ 1 3 2 1 0 0 -2],[ 2 3 1 2 0 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,0,1,1,2,0,2,1,3,3,1,1,2,1,1,1,2,0,0,2] |
Phi over symmetry | [-3,-1,0,1,1,2,0,2,1,3,3,1,1,2,1,1,1,2,0,0,2] |
Phi of -K | [-2,-1,-1,0,1,3,-1,1,0,2,2,0,0,0,1,0,1,3,0,1,2] |
Phi of K* | [-3,-1,0,1,1,2,2,1,1,3,2,0,0,1,2,0,0,0,0,-1,1] |
Phi of -K* | [-2,-1,-1,0,1,3,0,2,2,1,3,0,1,1,1,1,2,3,1,2,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+t^2+t |
Normalized Jones-Krushkal polynomial | 4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2-4w^3z+25w^2z+27w |
Inner characteristic polynomial | t^6+40t^4+38t^2+1 |
Outer characteristic polynomial | t^7+56t^5+79t^3+9t |
Flat arrow polynomial | 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial | -128*K1**6 + 256*K1**4*K2**3 - 896*K1**4*K2**2 + 1504*K1**4*K2 - 2800*K1**4 + 192*K1**3*K2*K3 - 224*K1**3*K3 - 1216*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 3168*K1**2*K2**3 - 8160*K1**2*K2**2 - 544*K1**2*K2*K4 + 7424*K1**2*K2 - 112*K1**2*K3**2 - 3108*K1**2 + 1824*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 160*K1*K2**2*K5 + 5176*K1*K2*K3 + 400*K1*K3*K4 - 32*K2**6 + 160*K2**4*K4 - 2152*K2**4 - 688*K2**2*K3**2 - 104*K2**2*K4**2 + 1064*K2**2*K4 - 1432*K2**2 + 120*K2*K3*K5 - 908*K3**2 - 198*K4**2 + 2692 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice | False |