| Gauss code |
O1O2O3O4U5O6U4U1U2O5U3U6 |
| R3 orbit |
{'O1O2O3O4U5O6U4U1U2O5U3U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U2O6U3U4U1O5U6 |
| Gauss code of K* |
O1O2O3U4O5O6U2U3U5U1O4U6 |
| Gauss code of -K* |
O1O2O3U4O5U3U6U1U2O4O6U5 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 0 1 0 -2 3],[ 2 0 1 1 0 0 3],[ 0 -1 0 0 0 -1 2],[-1 -1 0 0 1 -2 1],[ 0 0 0 -1 0 0 0],[ 2 0 1 2 0 0 3],[-3 -3 -2 -1 0 -3 0]] |
| Primitive based matrix |
[[ 0 3 1 0 0 -2 -2],[-3 0 -1 0 -2 -3 -3],[-1 1 0 1 0 -1 -2],[ 0 0 -1 0 0 0 0],[ 0 2 0 0 0 -1 -1],[ 2 3 1 0 1 0 0],[ 2 3 2 0 1 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,0,0,2,2,1,0,2,3,3,-1,0,1,2,0,0,0,1,1,0] |
| Phi over symmetry |
[-3,-1,0,0,2,2,1,0,2,3,3,-1,0,1,2,0,0,0,1,1,0] |
| Phi of -K |
[-2,-2,0,0,1,3,0,1,2,1,2,1,2,2,2,0,1,1,2,3,1] |
| Phi of K* |
[-3,-1,0,0,2,2,1,1,3,2,2,1,2,1,2,0,1,1,2,2,0] |
| Phi of -K* |
[-2,-2,0,0,1,3,0,0,1,1,3,0,1,2,3,0,-1,0,0,2,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
-t^3+2t^2-t |
| Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
| Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
| Inner characteristic polynomial |
t^6+31t^4+44t^2 |
| Outer characteristic polynomial |
t^7+49t^5+78t^3+3t |
| Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 2*K1*K2 - 2*K1 + 4*K2 + 5 |
| 2-strand cable arrow polynomial |
-1088*K1**4*K2**2 + 2080*K1**4*K2 - 3504*K1**4 + 384*K1**3*K2*K3 - 352*K1**3*K3 - 768*K1**2*K2**4 + 4000*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 10192*K1**2*K2**2 - 480*K1**2*K2*K4 + 10496*K1**2*K2 - 16*K1**2*K3**2 - 4700*K1**2 + 928*K1*K2**3*K3 - 1952*K1*K2**2*K3 - 96*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6184*K1*K2*K3 + 176*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 2320*K2**4 - 288*K2**2*K3**2 - 8*K2**2*K4**2 + 1488*K2**2*K4 - 2664*K2**2 + 56*K2*K3*K5 - 900*K3**2 - 124*K4**2 + 3626 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}]] |
| If K is slice |
False |