Gauss code |
O1O2O3O4O5O6U1U2U5U4U6U3 |
R3 orbit |
{'O1O2O3O4O5O6U1U2U5U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U1U3U2U5U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U2U6U4U3U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U4U3U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -3 2 1 1 4],[ 5 0 1 5 3 2 4],[ 3 -1 0 4 2 1 3],[-2 -5 -4 0 -1 -1 2],[-1 -3 -2 1 0 0 2],[-1 -2 -1 1 0 0 1],[-4 -4 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 2 1 1 -3 -5],[-4 0 -2 -1 -2 -3 -4],[-2 2 0 -1 -1 -4 -5],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 3 3 4 1 2 0 -1],[ 5 4 5 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,-1,3,5,2,1,2,3,4,1,1,4,5,0,1,2,2,3,1] |
Phi over symmetry |
[-5,-3,1,1,2,4,1,2,3,5,4,1,2,4,3,0,1,1,1,2,2] |
Phi of -K |
[-5,-3,1,1,2,4,1,3,4,2,5,2,3,1,4,0,0,1,0,2,0] |
Phi of K* |
[-4,-2,-1,-1,3,5,0,1,2,4,5,0,0,1,2,0,2,3,3,4,1] |
Phi of -K* |
[-5,-3,1,1,2,4,1,2,3,5,4,1,2,4,3,0,1,1,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4+t^3-t^2-2t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+9w^3z^2-4w^3z+28w^2z+21w |
Inner characteristic polynomial |
t^6+96t^4+32t^2 |
Outer characteristic polynomial |
t^7+152t^5+185t^3+12t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K3 - 2*K1*K4 + K2 + K3 + K5 + 2 |
2-strand cable arrow polynomial |
96*K1**3*K2*K3 + 512*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 2496*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 192*K1**2*K2*K4 + 2696*K1**2*K2 - 768*K1**2*K3**2 - 3104*K1**2 - 128*K1*K2**3*K3*K4 + 992*K1*K2**3*K3 + 672*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 + 224*K1*K2**2*K4*K5 - 256*K1*K2**2*K5 + 384*K1*K2*K3**3 - 832*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 4792*K1*K2*K3 - 32*K1*K2*K4*K5 - 64*K1*K3**2*K5 + 1328*K1*K3*K4 + 352*K1*K4*K5 + 8*K1*K6*K7 + 8*K1*K7*K8 - 2*K10**2 + 8*K10*K2*K8 - 32*K2**4*K4**2 + 320*K2**4*K4 - 1872*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 2400*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 96*K2**2*K3*K7 - 656*K2**2*K4**2 + 2184*K2**2*K4 - 320*K2**2*K5**2 - 8*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 2268*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 2112*K2*K3*K5 + 176*K2*K4*K6 + 192*K2*K5*K7 + 8*K2*K6*K8 + 8*K2*K7*K9 - 192*K3**4 + 128*K3**2*K6 - 1968*K3**2 + 72*K3*K4*K7 + 8*K3*K5*K8 - 1006*K4**2 - 544*K5**2 - 34*K6**2 - 72*K7**2 - 12*K8**2 + 3200 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice |
False |