Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.803

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,1,1,0,-1,1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.803']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+29t^5+78t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.803']
2-strand cable arrow polynomial of the knot is: -832*K1**4*K2**2 + 1696*K1**4*K2 - 2560*K1**4 + 96*K1**3*K2*K3 - 160*K1**3*K3 + 1920*K1**2*K2**3 - 9248*K1**2*K2**2 - 224*K1**2*K2*K4 + 10032*K1**2*K2 - 64*K1**2*K3**2 - 5760*K1**2 - 480*K1*K2**2*K3 + 6720*K1*K2*K3 + 256*K1*K3*K4 - 960*K2**4 + 520*K2**2*K4 - 3624*K2**2 - 1392*K3**2 - 156*K4**2 + 4218
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.803']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4746', 'vk6.5073', 'vk6.6284', 'vk6.6723', 'vk6.8245', 'vk6.8694', 'vk6.9635', 'vk6.9950', 'vk6.20405', 'vk6.21760', 'vk6.27747', 'vk6.29279', 'vk6.39183', 'vk6.41421', 'vk6.45919', 'vk6.47550', 'vk6.48786', 'vk6.48997', 'vk6.49602', 'vk6.49805', 'vk6.50802', 'vk6.51017', 'vk6.51285', 'vk6.51480', 'vk6.57266', 'vk6.58489', 'vk6.61914', 'vk6.63017', 'vk6.66883', 'vk6.67763', 'vk6.69515', 'vk6.70227']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U4U6U1O5U2U3
R3 orbit {'O1O2O3O4U5O6U4U6U1O5U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U3O5U4U6U1O6U5
Gauss code of K* O1O2O3U4O5O6U3U5U6U1O4U2
Gauss code of -K* O1O2O3U2O4U3U5U6U1O5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 -2 1],[ 1 0 0 1 -1 0 1],[ 0 0 0 1 0 -1 1],[-2 -1 -1 0 0 -3 1],[ 0 1 0 0 0 -1 1],[ 2 0 1 3 1 0 1],[-1 -1 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 1 0 -1 -1 -3],[-1 -1 0 -1 -1 -1 -1],[ 0 0 1 0 0 1 -1],[ 0 1 1 0 0 0 -1],[ 1 1 1 -1 0 0 0],[ 2 3 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,1,1,0,-1,1,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,1,3,1,1,1,1,0,-1,1,0,1,0]
Phi of -K [-2,-1,0,0,1,2,1,1,1,2,1,1,2,1,2,0,0,1,0,2,2]
Phi of K* [-2,-1,0,0,1,2,2,1,2,2,1,0,0,1,2,0,1,1,2,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,1,1,3,-1,0,1,1,0,1,0,1,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+19t^4+40t^2
Outer characteristic polynomial t^7+29t^5+78t^3+7t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -832*K1**4*K2**2 + 1696*K1**4*K2 - 2560*K1**4 + 96*K1**3*K2*K3 - 160*K1**3*K3 + 1920*K1**2*K2**3 - 9248*K1**2*K2**2 - 224*K1**2*K2*K4 + 10032*K1**2*K2 - 64*K1**2*K3**2 - 5760*K1**2 - 480*K1*K2**2*K3 + 6720*K1*K2*K3 + 256*K1*K3*K4 - 960*K2**4 + 520*K2**2*K4 - 3624*K2**2 - 1392*K3**2 - 156*K4**2 + 4218
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice False
Contact