Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.806

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,0,0,-1,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.806', '7.38450']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+32t^5+36t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.806', '6.1201']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 320*K1**4*K2**2 + 960*K1**4*K2 - 2320*K1**4 + 384*K1**3*K2*K3 - 480*K1**3*K3 - 192*K1**2*K2**4 + 736*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 2768*K1**2*K2**2 - 544*K1**2*K2*K4 + 3328*K1**2*K2 - 176*K1**2*K3**2 - 48*K1**2*K4**2 - 364*K1**2 + 224*K1*K2**3*K3 - 224*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 2088*K1*K2*K3 + 248*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 376*K2**4 - 32*K2**3*K6 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 368*K2**2*K4 - 734*K2**2 + 72*K2*K3*K5 + 16*K2*K4*K6 - 284*K3**2 - 90*K4**2 - 16*K5**2 - 2*K6**2 + 832
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.806']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.320', 'vk6.357', 'vk6.419', 'vk6.715', 'vk6.760', 'vk6.827', 'vk6.866', 'vk6.1126', 'vk6.1501', 'vk6.1567', 'vk6.1666', 'vk6.1950', 'vk6.1987', 'vk6.2040', 'vk6.2175', 'vk6.2282', 'vk6.2647', 'vk6.2730', 'vk6.2788', 'vk6.3110', 'vk6.5245', 'vk6.6500', 'vk6.8874', 'vk6.9789', 'vk6.18319', 'vk6.18656', 'vk6.19405', 'vk6.19698', 'vk6.25209', 'vk6.25863', 'vk6.26187', 'vk6.28496', 'vk6.36932', 'vk6.37396', 'vk6.37970', 'vk6.39872', 'vk6.40276', 'vk6.44852', 'vk6.46940', 'vk6.49133']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U4U6U3O5U1U2
R3 orbit {'O1O2O3O4U5U3O6U4U6O5U1U2', 'O1O2O3O4U5O6U4U6U3O5U1U2'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U3U4O5U2U6U1O6U5
Gauss code of K* O1O2O3U4O5O6U5U6U3U1O4U2
Gauss code of -K* O1O2O3U2O4U3U1U5U6O5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 1 0 -2 1],[ 1 0 1 1 0 -1 1],[-1 -1 0 1 0 -3 1],[-1 -1 -1 0 -1 -2 1],[ 0 0 0 1 0 -1 1],[ 2 1 3 2 1 0 1],[-1 -1 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -3],[-1 -1 0 1 -1 -1 -2],[-1 -1 -1 0 -1 -1 -1],[ 0 0 1 1 0 0 -1],[ 1 1 1 1 0 0 -1],[ 2 3 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,3,-1,1,1,2,1,1,1,0,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,0,0,-1,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,0,0,-1,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,0,1,2,-1,0,1,1,1,1,0,1,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,1,2,3,0,1,1,1,1,1,0,-1,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+24t^4+17t^2
Outer characteristic polynomial t^7+32t^5+36t^3+3t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -256*K1**6 - 320*K1**4*K2**2 + 960*K1**4*K2 - 2320*K1**4 + 384*K1**3*K2*K3 - 480*K1**3*K3 - 192*K1**2*K2**4 + 736*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 2768*K1**2*K2**2 - 544*K1**2*K2*K4 + 3328*K1**2*K2 - 176*K1**2*K3**2 - 48*K1**2*K4**2 - 364*K1**2 + 224*K1*K2**3*K3 - 224*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 2088*K1*K2*K3 + 248*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 376*K2**4 - 32*K2**3*K6 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 368*K2**2*K4 - 734*K2**2 + 72*K2*K3*K5 + 16*K2*K4*K6 - 284*K3**2 - 90*K4**2 - 16*K5**2 - 2*K6**2 + 832
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact