Gauss code |
O1O2O3O4U1O5U2U6U4U5O6U3 |
R3 orbit |
{'O1O2O3O4U1O5U2U6U4U5O6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2O5U6U1U5U3O6U4 |
Gauss code of K* |
O1O2O3O4U2O5U6U1U5U3O6U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 2 3 -2],[ 3 0 1 3 2 2 2],[ 2 -1 0 3 1 2 0],[-2 -3 -3 0 0 2 -4],[-2 -2 -1 0 0 1 -3],[-3 -2 -2 -2 -1 0 -3],[ 2 -2 0 4 3 3 0]] |
Primitive based matrix |
[[ 0 3 2 2 -2 -2 -3],[-3 0 -1 -2 -2 -3 -2],[-2 1 0 0 -1 -3 -2],[-2 2 0 0 -3 -4 -3],[ 2 2 1 3 0 0 -1],[ 2 3 3 4 0 0 -2],[ 3 2 2 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-2,2,2,3,1,2,2,3,2,0,1,3,2,3,4,3,0,1,2] |
Phi over symmetry |
[-3,-2,-2,2,2,3,-1,0,2,3,4,0,0,1,2,1,3,3,0,-1,0] |
Phi of -K |
[-3,-2,-2,2,2,3,-1,0,2,3,4,0,0,1,2,1,3,3,0,-1,0] |
Phi of K* |
[-3,-2,-2,2,2,3,-1,0,2,3,4,0,0,1,2,1,3,3,0,-1,0] |
Phi of -K* |
[-3,-2,-2,2,2,3,1,2,2,3,2,0,1,3,2,3,4,3,0,1,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2-4w^3z+23w^2z+31w |
Inner characteristic polynomial |
t^6+75t^4+75t^2+9 |
Outer characteristic polynomial |
t^7+109t^5+165t^3+21t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 768*K1**4*K2 - 1696*K1**4 + 128*K1**3*K2*K3 + 64*K1**3*K3*K4 - 448*K1**3*K3 + 960*K1**2*K2**3 - 6816*K1**2*K2**2 - 384*K1**2*K2*K4 + 8976*K1**2*K2 - 256*K1**2*K3**2 - 64*K1**2*K3*K5 - 64*K1**2*K4**2 - 6248*K1**2 + 192*K1*K2**3*K3 - 384*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 6480*K1*K2*K3 + 704*K1*K3*K4 + 144*K1*K4*K5 - 64*K2**6 + 64*K2**4*K4 - 1664*K2**4 - 192*K2**2*K3**2 - 48*K2**2*K4**2 + 1376*K2**2*K4 - 3704*K2**2 + 144*K2*K3*K5 + 32*K2*K4*K6 - 1736*K3**2 - 536*K4**2 - 80*K5**2 - 8*K6**2 + 4550 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice |
True |