Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.809

Min(phi) over symmetries of the knot is: [-3,-2,-2,2,2,3,-1,0,2,4,4,0,0,2,1,1,3,3,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.809']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+105t^5+108t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.809']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 224*K1**4*K2 - 736*K1**4 + 32*K1**3*K2*K3 + 224*K1**2*K2**3 - 1440*K1**2*K2**2 + 2400*K1**2*K2 - 256*K1**2*K3**2 - 32*K1**2*K4**2 - 2032*K1**2 + 96*K1*K2**3*K3 + 1960*K1*K2*K3 + 448*K1*K3*K4 + 80*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 368*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 376*K2**2*K4 - 1454*K2**2 + 128*K2*K3*K5 + 16*K2*K4*K6 - 808*K3**2 - 324*K4**2 - 72*K5**2 - 10*K6**2 + 1778
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.809']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71391', 'vk6.71452', 'vk6.71913', 'vk6.71974', 'vk6.72465', 'vk6.72614', 'vk6.72733', 'vk6.72824', 'vk6.72888', 'vk6.73043', 'vk6.74222', 'vk6.74362', 'vk6.74420', 'vk6.74851', 'vk6.75035', 'vk6.76605', 'vk6.76900', 'vk6.77048', 'vk6.77414', 'vk6.77767', 'vk6.77818', 'vk6.79272', 'vk6.79408', 'vk6.79746', 'vk6.79824', 'vk6.79877', 'vk6.80854', 'vk6.80904', 'vk6.81387', 'vk6.85513', 'vk6.87216', 'vk6.89258']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2U6U5U4O6U3
R3 orbit {'O1O2O3O4U1O5U2U6U5U4O6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2O5U1U6U5U3O6U4
Gauss code of K* O1O2O3O4U2O5U6U1U5U4O6U3
Gauss code of -K* O1O2O3O4U2O5U1U6U4U5O6U3
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 3 2 -2],[ 3 0 1 3 2 1 2],[ 2 -1 0 3 2 1 0],[-2 -3 -3 0 1 1 -4],[-3 -2 -2 -1 0 0 -4],[-2 -1 -1 -1 0 0 -2],[ 2 -2 0 4 4 2 0]]
Primitive based matrix [[ 0 3 2 2 -2 -2 -3],[-3 0 0 -1 -2 -4 -2],[-2 0 0 -1 -1 -2 -1],[-2 1 1 0 -3 -4 -3],[ 2 2 1 3 0 0 -1],[ 2 4 2 4 0 0 -2],[ 3 2 1 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-2,2,2,3,0,1,2,4,2,1,1,2,1,3,4,3,0,1,2]
Phi over symmetry [-3,-2,-2,2,2,3,-1,0,2,4,4,0,0,2,1,1,3,3,-1,0,1]
Phi of -K [-3,-2,-2,2,2,3,-1,0,2,4,4,0,0,2,1,1,3,3,-1,0,1]
Phi of K* [-3,-2,-2,2,2,3,0,1,1,3,4,1,0,1,2,2,3,4,0,-1,0]
Phi of -K* [-3,-2,-2,2,2,3,1,2,1,3,2,0,1,3,2,2,4,4,-1,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial -2w^3z+13w^2z+23w
Inner characteristic polynomial t^6+71t^4+36t^2
Outer characteristic polynomial t^7+105t^5+108t^3
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**4*K2**2 + 224*K1**4*K2 - 736*K1**4 + 32*K1**3*K2*K3 + 224*K1**2*K2**3 - 1440*K1**2*K2**2 + 2400*K1**2*K2 - 256*K1**2*K3**2 - 32*K1**2*K4**2 - 2032*K1**2 + 96*K1*K2**3*K3 + 1960*K1*K2*K3 + 448*K1*K3*K4 + 80*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 368*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 376*K2**2*K4 - 1454*K2**2 + 128*K2*K3*K5 + 16*K2*K4*K6 - 808*K3**2 - 324*K4**2 - 72*K5**2 - 10*K6**2 + 1778
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice True
Contact