Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.814

Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1]
Flat knots (up to 7 crossings) with same phi are :['6.814']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+78t^5+104t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.814']
2-strand cable arrow polynomial of the knot is: -416*K1**4 + 704*K1**3*K2*K3 - 128*K1**2*K2**2*K3**2 - 2208*K1**2*K2**2 + 1376*K1**2*K2 - 896*K1**2*K3**2 - 1456*K1**2 + 320*K1*K2**3*K3 + 128*K1*K2*K3**3 + 3760*K1*K2*K3 + 480*K1*K3*K4 - 176*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 160*K2**2*K4 - 1484*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 - 1352*K3**2 - 172*K4**2 - 8*K5**2 - 4*K6**2 + 1674
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.814']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11202', 'vk6.11218', 'vk6.12398', 'vk6.12415', 'vk6.14506', 'vk6.15727', 'vk6.16155', 'vk6.30793', 'vk6.30820', 'vk6.32004', 'vk6.34075', 'vk6.34185', 'vk6.34467', 'vk6.34511', 'vk6.51937', 'vk6.51962', 'vk6.54158', 'vk6.54356', 'vk6.63611', 'vk6.63624']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U3U6U5O6U2
R3 orbit {'O1O2O3O4U1O5U4U3U6U5O6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3O5U6U5U2U1O6U4
Gauss code of K* O1O2O3O4U3O5U6U5U2U1O6U4
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 0 0 3 -1],[ 3 0 3 2 1 2 3],[-1 -3 0 -1 -1 3 -2],[ 0 -2 1 0 0 2 -1],[ 0 -1 1 0 0 1 -1],[-3 -2 -3 -2 -1 0 -3],[ 1 -3 2 1 1 3 0]]
Primitive based matrix [[ 0 3 1 0 0 -1 -3],[-3 0 -3 -1 -2 -3 -2],[-1 3 0 -1 -1 -2 -3],[ 0 1 1 0 0 -1 -1],[ 0 2 1 0 0 -1 -2],[ 1 3 2 1 1 0 -3],[ 3 2 3 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,1,3,3,1,2,3,2,1,1,2,3,0,1,1,1,2,3]
Phi over symmetry [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1]
Phi of -K [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1]
Phi of K* [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1]
Phi of -K* [-3,-1,0,0,1,3,3,1,2,3,2,1,1,2,3,0,1,1,1,2,3]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial -12w^3z+19w^2z+15w
Inner characteristic polynomial t^6+58t^4+76t^2
Outer characteristic polynomial t^7+78t^5+104t^3
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -416*K1**4 + 704*K1**3*K2*K3 - 128*K1**2*K2**2*K3**2 - 2208*K1**2*K2**2 + 1376*K1**2*K2 - 896*K1**2*K3**2 - 1456*K1**2 + 320*K1*K2**3*K3 + 128*K1*K2*K3**3 + 3760*K1*K2*K3 + 480*K1*K3*K4 - 176*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 160*K2**2*K4 - 1484*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 - 1352*K3**2 - 172*K4**2 - 8*K5**2 - 4*K6**2 + 1674
Genus of based matrix 0
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}]]
If K is slice True
Contact