Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.814'] |
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932'] |
Outer characteristic polynomial of the knot is: t^7+78t^5+104t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.814'] |
2-strand cable arrow polynomial of the knot is: -416*K1**4 + 704*K1**3*K2*K3 - 128*K1**2*K2**2*K3**2 - 2208*K1**2*K2**2 + 1376*K1**2*K2 - 896*K1**2*K3**2 - 1456*K1**2 + 320*K1*K2**3*K3 + 128*K1*K2*K3**3 + 3760*K1*K2*K3 + 480*K1*K3*K4 - 176*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 160*K2**2*K4 - 1484*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 - 1352*K3**2 - 172*K4**2 - 8*K5**2 - 4*K6**2 + 1674 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.814'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11202', 'vk6.11218', 'vk6.12398', 'vk6.12415', 'vk6.14506', 'vk6.15727', 'vk6.16155', 'vk6.30793', 'vk6.30820', 'vk6.32004', 'vk6.34075', 'vk6.34185', 'vk6.34467', 'vk6.34511', 'vk6.51937', 'vk6.51962', 'vk6.54158', 'vk6.54356', 'vk6.63611', 'vk6.63624'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is -. |
The reverse -K is |
The mirror image K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1O5U4U3U6U5O6U2 |
R3 orbit | {'O1O2O3O4U1O5U4U3U6U5O6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3O5U6U5U2U1O6U4 |
Gauss code of K* | O1O2O3O4U3O5U6U5U2U1O6U4 |
Gauss code of -K* | Same |
Diagrammatic symmetry type | - |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 0 0 3 -1],[ 3 0 3 2 1 2 3],[-1 -3 0 -1 -1 3 -2],[ 0 -2 1 0 0 2 -1],[ 0 -1 1 0 0 1 -1],[-3 -2 -3 -2 -1 0 -3],[ 1 -3 2 1 1 3 0]] |
Primitive based matrix | [[ 0 3 1 0 0 -1 -3],[-3 0 -3 -1 -2 -3 -2],[-1 3 0 -1 -1 -2 -3],[ 0 1 1 0 0 -1 -1],[ 0 2 1 0 0 -1 -2],[ 1 3 2 1 1 0 -3],[ 3 2 3 1 2 3 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,0,0,1,3,3,1,2,3,2,1,1,2,3,0,1,1,1,2,3] |
Phi over symmetry | [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1] |
Phi of -K | [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1] |
Phi of K* | [-3,-1,0,0,1,3,-1,1,2,1,4,0,0,0,1,0,0,1,0,2,-1] |
Phi of -K* | [-3,-1,0,0,1,3,3,1,2,3,2,1,1,2,3,0,1,1,1,2,3] |
Symmetry type of based matrix | - |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 7z+15 |
Enhanced Jones-Krushkal polynomial | -12w^3z+19w^2z+15w |
Inner characteristic polynomial | t^6+58t^4+76t^2 |
Outer characteristic polynomial | t^7+78t^5+104t^3 |
Flat arrow polynomial | -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | -416*K1**4 + 704*K1**3*K2*K3 - 128*K1**2*K2**2*K3**2 - 2208*K1**2*K2**2 + 1376*K1**2*K2 - 896*K1**2*K3**2 - 1456*K1**2 + 320*K1*K2**3*K3 + 128*K1*K2*K3**3 + 3760*K1*K2*K3 + 480*K1*K3*K4 - 176*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 160*K2**2*K4 - 1484*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 - 1352*K3**2 - 172*K4**2 - 8*K5**2 - 4*K6**2 + 1674 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}]] |
If K is slice | True |