Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.819

Min(phi) over symmetries of the knot is: [-3,-3,1,1,2,2,-1,1,3,3,4,0,2,1,3,0,0,-1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.819']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+92t^5+94t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.819']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 672*K1**4*K2 - 2304*K1**4 + 288*K1**3*K2*K3 + 32*K1**3*K3*K4 - 320*K1**3*K3 - 192*K1**2*K2**4 + 672*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4288*K1**2*K2**2 - 544*K1**2*K2*K4 + 6784*K1**2*K2 - 352*K1**2*K3**2 - 112*K1**2*K4**2 - 3884*K1**2 + 288*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 - 128*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4944*K1*K2*K3 - 32*K1*K2*K4*K5 + 680*K1*K3*K4 + 56*K1*K4*K5 - 64*K2**6 + 64*K2**4*K4 - 864*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 880*K2**2*K4 - 2848*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 1292*K3**2 - 232*K4**2 - 8*K5**2 + 3094
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.819']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11540', 'vk6.11873', 'vk6.12886', 'vk6.13195', 'vk6.20345', 'vk6.21686', 'vk6.27645', 'vk6.29189', 'vk6.31315', 'vk6.31712', 'vk6.32469', 'vk6.32886', 'vk6.39075', 'vk6.41331', 'vk6.45827', 'vk6.47496', 'vk6.52315', 'vk6.52577', 'vk6.53155', 'vk6.53457', 'vk6.57216', 'vk6.58437', 'vk6.61826', 'vk6.62957', 'vk6.63816', 'vk6.63950', 'vk6.64258', 'vk6.64456', 'vk6.66825', 'vk6.67693', 'vk6.69461', 'vk6.70183']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U6U4U5U3O6U2
R3 orbit {'O1O2O3O4U1O5U6U4U5U3O6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3O5U2U6U1U5O6U4
Gauss code of K* O1O2O3O4U1O5U6U5U4U2O6U3
Gauss code of -K* O1O2O3O4U2O5U3U1U6U5O6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 2 1 2 -3],[ 3 0 3 2 1 1 1],[-1 -3 0 1 0 2 -4],[-2 -2 -1 0 -1 1 -4],[-1 -1 0 1 0 1 -2],[-2 -1 -2 -1 -1 0 -2],[ 3 -1 4 4 2 2 0]]
Primitive based matrix [[ 0 2 2 1 1 -3 -3],[-2 0 1 -1 -1 -2 -4],[-2 -1 0 -1 -2 -1 -2],[-1 1 1 0 0 -1 -2],[-1 1 2 0 0 -3 -4],[ 3 2 1 1 3 0 1],[ 3 4 2 2 4 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,-1,3,3,-1,1,1,2,4,1,2,1,2,0,1,2,3,4,-1]
Phi over symmetry [-3,-3,1,1,2,2,-1,1,3,3,4,0,2,1,3,0,0,-1,0,0,-1]
Phi of -K [-3,-3,1,1,2,2,-1,1,3,3,4,0,2,1,3,0,0,-1,0,0,-1]
Phi of K* [-2,-2,-1,-1,3,3,-1,-1,0,3,4,0,0,1,3,0,0,1,2,3,-1]
Phi of -K* [-3,-3,1,1,2,2,-1,2,4,2,4,1,3,1,2,0,1,1,2,1,-1]
Symmetry type of based matrix c
u-polynomial 2t^3-2t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+64t^4+30t^2+1
Outer characteristic polynomial t^7+92t^5+94t^3+5t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -64*K1**6 + 672*K1**4*K2 - 2304*K1**4 + 288*K1**3*K2*K3 + 32*K1**3*K3*K4 - 320*K1**3*K3 - 192*K1**2*K2**4 + 672*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 4288*K1**2*K2**2 - 544*K1**2*K2*K4 + 6784*K1**2*K2 - 352*K1**2*K3**2 - 112*K1**2*K4**2 - 3884*K1**2 + 288*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 - 128*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4944*K1*K2*K3 - 32*K1*K2*K4*K5 + 680*K1*K3*K4 + 56*K1*K4*K5 - 64*K2**6 + 64*K2**4*K4 - 864*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 880*K2**2*K4 - 2848*K2**2 + 160*K2*K3*K5 + 16*K2*K4*K6 - 1292*K3**2 - 232*K4**2 - 8*K5**2 + 3094
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}]]
If K is slice False
Contact