Gauss code |
O1O2O3O4U1O5U6U5U3U4O6U2 |
R3 orbit |
{'O1O2O3O4U1O5U6U5U3U4O6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3O5U1U2U6U5O6U4 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4U3O5U1U2U6U5O6U4 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 1 3 1 -3],[ 3 0 3 1 2 0 1],[-1 -3 0 0 2 1 -4],[-1 -1 0 0 1 0 -3],[-3 -2 -2 -1 0 0 -4],[-1 0 -1 0 0 0 -1],[ 3 -1 4 3 4 1 0]] |
Primitive based matrix |
[[ 0 3 1 1 1 -3 -3],[-3 0 0 -1 -2 -2 -4],[-1 0 0 0 -1 0 -1],[-1 1 0 0 0 -1 -3],[-1 2 1 0 0 -3 -4],[ 3 2 0 1 3 0 1],[ 3 4 1 3 4 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,-1,3,3,0,1,2,2,4,0,1,0,1,0,1,3,3,4,-1] |
Phi over symmetry |
[-3,-3,1,1,1,3,-1,1,3,4,4,0,1,3,2,0,-1,0,0,1,2] |
Phi of -K |
[-3,-3,1,1,1,3,-1,1,3,4,4,0,1,3,2,0,-1,0,0,1,2] |
Phi of K* |
[-3,-1,-1,-1,3,3,0,1,2,2,4,0,1,0,1,0,1,3,3,4,-1] |
Phi of -K* |
[-3,-3,1,1,1,3,-1,1,3,4,4,0,1,3,2,0,-1,0,0,1,2] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-4w^3z+25w^2z+27w |
Inner characteristic polynomial |
t^6+63t^4+72t^2+4 |
Outer characteristic polynomial |
t^7+93t^5+146t^3+16t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 6*K1*K2 - 3*K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 768*K1**4*K2 - 1536*K1**4 + 768*K1**3*K2*K3 - 512*K1**3*K3 - 1408*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3648*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 9600*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 512*K1**2*K2*K4 + 8928*K1**2*K2 - 320*K1**2*K3**2 - 5032*K1**2 + 2176*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1856*K1*K2**2*K3 - 128*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 7088*K1*K2*K3 + 240*K1*K3*K4 - 64*K2**6 + 64*K2**4*K4 - 2512*K2**4 - 1024*K2**2*K3**2 - 56*K2**2*K4**2 + 1400*K2**2*K4 - 2246*K2**2 + 304*K2*K3*K5 + 8*K2*K4*K6 - 1344*K3**2 - 72*K4**2 - 8*K5**2 - 2*K6**2 + 3478 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}]] |
If K is slice |
False |