Gauss code |
O1O2O3O4U2O5U1U5U6U4O6U3 |
R3 orbit |
{'O1O2O3O4U2O5U1U5U6U4O6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3O4U3O5U1U6U5U4O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5U1U6U5U4O6U2 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 3 1 -1],[ 3 0 0 4 3 1 2],[ 2 0 0 2 1 0 1],[-2 -4 -2 0 1 0 -3],[-3 -3 -1 -1 0 0 -3],[-1 -1 0 0 0 0 -1],[ 1 -2 -1 3 3 1 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -2 -3],[-3 0 -1 0 -3 -1 -3],[-2 1 0 0 -3 -2 -4],[-1 0 0 0 -1 0 -1],[ 1 3 3 1 0 -1 -2],[ 2 1 2 0 1 0 0],[ 3 3 4 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,2,3,1,0,3,1,3,0,3,2,4,1,0,1,1,2,0] |
Phi over symmetry |
[-3,-2,-1,1,2,3,0,2,1,4,3,1,0,2,1,1,3,3,0,0,1] |
Phi of -K |
[-3,-2,-1,1,2,3,1,0,3,1,3,0,3,2,4,1,0,1,1,2,0] |
Phi of K* |
[-3,-2,-1,1,2,3,0,2,1,4,3,1,0,2,1,1,3,3,0,0,1] |
Phi of -K* |
[-3,-2,-1,1,2,3,0,2,1,4,3,1,0,2,1,1,3,3,0,0,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
12z+25 |
Enhanced Jones-Krushkal polynomial |
12w^2z+25w |
Inner characteristic polynomial |
t^6+56t^4+24t^2 |
Outer characteristic polynomial |
t^7+84t^5+80t^3 |
Flat arrow polynomial |
-12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 768*K1**4*K2 - 2048*K1**4 + 192*K1**3*K2*K3 + 64*K1**3*K3*K4 + 128*K1**2*K2**3 - 2592*K1**2*K2**2 + 3360*K1**2*K2 - 608*K1**2*K3**2 - 64*K1**2*K4**2 - 1344*K1**2 + 2688*K1*K2*K3 + 624*K1*K3*K4 + 64*K1*K4*K5 - 656*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 400*K2**2*K4 - 1164*K2**2 + 272*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 + 32*K3**2*K6 - 776*K3**2 - 244*K4**2 - 56*K5**2 - 12*K6**2 + 1674 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {5}, {1, 3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice |
False |