| Gauss code |
O1O2O3O4U2O5U1U6U5U4O6U3 |
| R3 orbit |
{'O1O2O3O4U2O5U1U6U5U4O6U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
Same |
| Gauss code of K* |
Same |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
a |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -2 2 3 2 -2],[ 3 0 0 4 3 1 1],[ 2 0 0 2 1 0 1],[-2 -4 -2 0 1 1 -4],[-3 -3 -1 -1 0 0 -4],[-2 -1 0 -1 0 0 -2],[ 2 -1 -1 4 4 2 0]] |
| Primitive based matrix |
[[ 0 3 2 2 -2 -2 -3],[-3 0 0 -1 -1 -4 -3],[-2 0 0 -1 0 -2 -1],[-2 1 1 0 -2 -4 -4],[ 2 1 0 2 0 1 0],[ 2 4 2 4 -1 0 -1],[ 3 3 1 4 0 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-2,-2,2,2,3,0,1,1,4,3,1,0,2,1,2,4,4,-1,0,1] |
| Phi over symmetry |
[-3,-2,-2,2,2,3,0,1,1,4,3,1,0,2,1,2,4,4,-1,0,1] |
| Phi of -K |
[-3,-2,-2,2,2,3,0,1,1,4,3,1,0,2,1,2,4,4,-1,0,1] |
| Phi of K* |
[-3,-2,-2,2,2,3,0,1,1,4,3,1,0,2,1,2,4,4,-1,0,1] |
| Phi of -K* |
[-3,-2,-2,2,2,3,0,1,1,4,3,1,0,2,1,2,4,4,-1,0,1] |
| Symmetry type of based matrix |
a |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
2z^2+22z+37 |
| Enhanced Jones-Krushkal polynomial |
2w^3z^2+22w^2z+37w |
| Inner characteristic polynomial |
t^6+71t^4+71t^2+1 |
| Outer characteristic polynomial |
t^7+105t^5+175t^3+7t |
| Flat arrow polynomial |
-8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5 |
| 2-strand cable arrow polynomial |
128*K1**4*K2 - 1920*K1**4 - 2624*K1**2*K2**2 + 8096*K1**2*K2 - 64*K1**2*K3**2 - 6880*K1**2 + 256*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 512*K1*K2*K3*K4 + 6464*K1*K2*K3 + 1408*K1*K3*K4 + 128*K1*K4*K5 - 416*K2**4 - 512*K2**2*K3**2 - 48*K2**2*K4**2 + 2032*K2**2*K4 - 6276*K2**2 + 576*K2*K3*K5 + 48*K2*K4*K6 - 2880*K3**2 - 1184*K4**2 - 128*K5**2 - 12*K6**2 + 5854 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
| If K is slice |
True |