Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,1,2,2,1,1,1,1,0,0,1,0,1,2] |
Flat knots (up to 7 crossings) with same phi are :['6.828'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+28t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.828'] |
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 704*K1**4*K2 - 2144*K1**4 + 128*K1**2*K2**3 - 1312*K1**2*K2**2 + 3600*K1**2*K2 - 96*K1**2*K3**2 - 1736*K1**2 + 1296*K1*K2*K3 + 96*K1*K3*K4 - 96*K2**4 + 64*K2**2*K4 - 1552*K2**2 - 408*K3**2 - 40*K4**2 + 1622 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.828'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3562', 'vk6.3581', 'vk6.3804', 'vk6.3835', 'vk6.6970', 'vk6.7001', 'vk6.7188', 'vk6.7219', 'vk6.15356', 'vk6.15483', 'vk6.33987', 'vk6.34039', 'vk6.34444', 'vk6.48221', 'vk6.48378', 'vk6.49955', 'vk6.49975', 'vk6.54005', 'vk6.54055', 'vk6.54500'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is r. |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2O5U4U5U6U1O6U3 |
R3 orbit | {'O1O2O3O4U2O5U4U5U6U1O6U3'} |
R3 orbit length | 1 |
Gauss code of -K | Same |
Gauss code of K* | O1O2O3O4U3O5U4U6U5U1O6U2 |
Gauss code of -K* | O1O2O3O4U3O5U4U6U5U1O6U2 |
Diagrammatic symmetry type | r |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 0 -2 2 0 1 -1],[ 0 0 -1 1 0 1 0],[ 2 1 0 2 1 1 2],[-2 -1 -2 0 -1 1 -2],[ 0 0 -1 1 0 1 0],[-1 -1 -1 -1 -1 0 -1],[ 1 0 -2 2 0 1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -1 -2 -2],[-1 -1 0 -1 -1 -1 -1],[ 0 1 1 0 0 0 -1],[ 0 1 1 0 0 0 -1],[ 1 2 1 0 0 0 -2],[ 2 2 1 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,-1,1,1,2,2,1,1,1,1,0,0,1,0,1,2] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,1,1,2,2,1,1,1,1,0,0,1,0,1,2] |
Phi of -K | [-2,-1,0,0,1,2,-1,1,1,2,2,1,1,1,1,0,0,1,0,1,2] |
Phi of K* | [-2,-1,0,0,1,2,2,1,1,1,2,0,0,1,2,0,1,1,1,1,-1] |
Phi of -K* | [-2,-1,0,0,1,2,2,1,1,1,2,0,0,1,2,0,1,1,1,1,-1] |
Symmetry type of based matrix | r |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 13z+27 |
Enhanced Jones-Krushkal polynomial | 13w^2z+27w |
Inner characteristic polynomial | t^6+21t^4+8t^2 |
Outer characteristic polynomial | t^7+31t^5+28t^3 |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -128*K1**4*K2**2 + 704*K1**4*K2 - 2144*K1**4 + 128*K1**2*K2**3 - 1312*K1**2*K2**2 + 3600*K1**2*K2 - 96*K1**2*K3**2 - 1736*K1**2 + 1296*K1*K2*K3 + 96*K1*K3*K4 - 96*K2**4 + 64*K2**2*K4 - 1552*K2**2 - 408*K3**2 - 40*K4**2 + 1622 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice | False |