Gauss code |
O1O2O3O4U2O5U4U6U3U1O6U5 |
R3 orbit |
{'O1O2O3O4U2O5U4U6U3U1O6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5O6U4U2U6U1O5U3 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4U5O6U4U2U6U1O5U3 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 0 -2 1 0 3 -2],[ 0 0 -2 1 1 2 -1],[ 2 2 0 2 1 2 1],[-1 -1 -2 0 0 1 -1],[ 0 -1 -1 0 0 1 0],[-3 -2 -2 -1 -1 0 -3],[ 2 1 -1 1 0 3 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -2 -2],[-3 0 -1 -1 -2 -2 -3],[-1 1 0 0 -1 -2 -1],[ 0 1 0 0 -1 -1 0],[ 0 2 1 1 0 -2 -1],[ 2 2 2 1 2 0 1],[ 2 3 1 0 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,2,2,1,1,2,2,3,0,1,2,1,1,1,0,2,1,-1] |
Phi over symmetry |
[-3,-1,0,0,2,2,1,1,2,2,3,0,1,2,1,1,1,0,2,1,-1] |
Phi of -K |
[-2,-2,0,0,1,3,-1,0,1,1,3,1,2,2,2,-1,0,1,1,2,1] |
Phi of K* |
[-3,-1,0,0,2,2,1,1,2,2,3,0,1,2,1,1,1,0,2,1,-1] |
Phi of -K* |
[-2,-2,0,0,1,3,-1,0,1,1,3,1,2,2,2,-1,0,1,1,2,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
17z+35 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+21w^2z+35w |
Inner characteristic polynomial |
t^6+33t^4+51t^2+4 |
Outer characteristic polynomial |
t^7+51t^5+109t^3+16t |
Flat arrow polynomial |
-8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
-1088*K1**4 - 320*K1**3*K3 + 1280*K1**2*K2**3 - 4576*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 8768*K1**2*K2 - 192*K1**2*K3**2 - 7264*K1**2 + 384*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 6032*K1*K2*K3 + 560*K1*K3*K4 - 1088*K2**4 - 448*K2**2*K3**2 - 8*K2**2*K4**2 + 952*K2**2*K4 - 4390*K2**2 + 208*K2*K3*K5 + 8*K2*K4*K6 - 1856*K3**2 - 276*K4**2 - 16*K5**2 - 2*K6**2 + 4802 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |