Min(phi) over symmetries of the knot is: [-1,-1,1,1,0,0,1,1,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.831'] |
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931'] |
Outer characteristic polynomial of the knot is: t^5+10t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['4.5', '5.97', '6.831', '6.2072', '7.44282'] |
2-strand cable arrow polynomial of the knot is: 4480*K1**4*K2 - 10240*K1**4 + 1664*K1**3*K2*K3 - 2688*K1**3*K3 - 256*K1**2*K2**4 + 1152*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 10176*K1**2*K2**2 - 1024*K1**2*K2*K4 + 14304*K1**2*K2 - 2240*K1**2*K3**2 - 64*K1**2*K4**2 - 3648*K1**2 + 512*K1*K2**3*K3 - 2048*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 10752*K1*K2*K3 + 2560*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 64*K2**4*K4 - 1104*K2**4 - 640*K2**2*K3**2 - 48*K2**2*K4**2 + 1696*K2**2*K4 - 4968*K2**2 + 480*K2*K3*K5 + 32*K2*K4*K6 - 2784*K3**2 - 924*K4**2 - 128*K5**2 - 8*K6**2 + 5322 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.831'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13818', 'vk6.13830', 'vk6.13837', 'vk6.13862', 'vk6.14889', 'vk6.14912', 'vk6.14920', 'vk6.14935', 'vk6.34235', 'vk6.34248', 'vk6.53842', 'vk6.53845', 'vk6.54384', 'vk6.54386'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is a. |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U1U5U6U4O6U2 |
R3 orbit | {'O1O2O3O4U3O5U1U5U6U4O6U2'} |
R3 orbit length | 1 |
Gauss code of -K | Same |
Gauss code of K* | Same |
Gauss code of -K* | Same |
Diagrammatic symmetry type | a |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -1 3 1 -1],[ 3 0 3 0 3 1 2],[-1 -3 0 -1 2 0 -2],[ 1 0 1 0 1 0 0],[-3 -3 -2 -1 0 0 -3],[-1 -1 0 0 0 0 -1],[ 1 -2 2 0 3 1 0]] |
Primitive based matrix | [[ 0 1 1 -1 -1],[-1 0 0 0 -1],[-1 0 0 -1 -2],[ 1 0 1 0 0],[ 1 1 2 0 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,-1,1,1,0,0,1,1,2,0] |
Phi over symmetry | [-1,-1,1,1,0,0,1,1,2,0] |
Phi of -K | [-1,-1,1,1,0,0,1,1,2,0] |
Phi of K* | [-1,-1,1,1,0,0,1,1,2,0] |
Phi of -K* | [-1,-1,1,1,0,0,1,1,2,0] |
Symmetry type of based matrix | a |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2+29w^2z+27w |
Inner characteristic polynomial | t^4+6t^2+1 |
Outer characteristic polynomial | t^5+10t^3+5t |
Flat arrow polynomial | 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial | 4480*K1**4*K2 - 10240*K1**4 + 1664*K1**3*K2*K3 - 2688*K1**3*K3 - 256*K1**2*K2**4 + 1152*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 10176*K1**2*K2**2 - 1024*K1**2*K2*K4 + 14304*K1**2*K2 - 2240*K1**2*K3**2 - 64*K1**2*K4**2 - 3648*K1**2 + 512*K1*K2**3*K3 - 2048*K1*K2**2*K3 - 384*K1*K2*K3*K4 + 10752*K1*K2*K3 + 2560*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 64*K2**4*K4 - 1104*K2**4 - 640*K2**2*K3**2 - 48*K2**2*K4**2 + 1696*K2**2*K4 - 4968*K2**2 + 480*K2*K3*K5 + 32*K2*K4*K6 - 2784*K3**2 - 924*K4**2 - 128*K5**2 - 8*K6**2 + 5322 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice | True |