Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.835

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,1,3,3,1,1,0,1,0,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.835']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+74t^5+99t^3+19t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.835']
2-strand cable arrow polynomial of the knot is: 448*K1**2*K2**3 - 3936*K1**2*K2**2 - 128*K1**2*K2*K4 + 3320*K1**2*K2 - 2216*K1**2 + 704*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 736*K1*K2**2*K3 - 160*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3488*K1*K2*K3 + 240*K1*K3*K4 - 768*K2**6 + 1152*K2**4*K4 - 4128*K2**4 - 192*K2**3*K6 - 448*K2**2*K3**2 - 392*K2**2*K4**2 + 3008*K2**2*K4 - 134*K2**2 + 104*K2*K3*K5 + 64*K2*K4*K6 - 808*K3**2 - 492*K4**2 - 2*K6**2 + 1882
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.835']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73992', 'vk6.73996', 'vk6.74516', 'vk6.74522', 'vk6.75984', 'vk6.75992', 'vk6.76732', 'vk6.76735', 'vk6.78968', 'vk6.78970', 'vk6.79516', 'vk6.79520', 'vk6.80494', 'vk6.80498', 'vk6.80966', 'vk6.80968', 'vk6.83025', 'vk6.83481', 'vk6.83720', 'vk6.83722', 'vk6.83958', 'vk6.84001', 'vk6.84016', 'vk6.85083', 'vk6.86285', 'vk6.86658', 'vk6.86660', 'vk6.87469', 'vk6.87475', 'vk6.87916', 'vk6.88866', 'vk6.88873']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U2O5O6U3U4U6U5
R3 orbit {'O1O2O3O4U1U2O5O6U3U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U1U2O6O5U3U4
Gauss code of K* O1O2O3O4U5U6U1U2O5O6U4U3
Gauss code of -K* O1O2O3O4U2U1O5O6U3U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 -1 1 2 2],[ 3 0 1 2 3 2 2],[ 1 -1 0 1 2 2 2],[ 1 -2 -1 0 1 3 2],[-1 -3 -2 -1 0 2 1],[-2 -2 -2 -3 -2 0 0],[-2 -2 -2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 2 1 -1 -1 -3],[-2 0 0 -1 -2 -2 -2],[-2 0 0 -2 -2 -3 -2],[-1 1 2 0 -2 -1 -3],[ 1 2 2 2 0 1 -1],[ 1 2 3 1 -1 0 -2],[ 3 2 2 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,1,3,0,1,2,2,2,2,2,3,2,2,1,3,-1,1,2]
Phi over symmetry [-3,-1,-1,1,2,2,0,1,1,3,3,1,1,0,1,0,1,1,-1,0,0]
Phi of -K [-3,-1,-1,1,2,2,0,1,1,3,3,1,1,0,1,0,1,1,-1,0,0]
Phi of K* [-2,-2,-1,1,1,3,0,-1,0,1,3,0,1,1,3,1,0,1,-1,0,1]
Phi of -K* [-3,-1,-1,1,2,2,1,2,3,2,2,1,2,2,2,1,2,3,1,2,0]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 2z^2+7z+7
Enhanced Jones-Krushkal polynomial -6w^4z^2+8w^3z^2-16w^3z+23w^2z+7w
Inner characteristic polynomial t^6+54t^4+37t^2+1
Outer characteristic polynomial t^7+74t^5+99t^3+19t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 448*K1**2*K2**3 - 3936*K1**2*K2**2 - 128*K1**2*K2*K4 + 3320*K1**2*K2 - 2216*K1**2 + 704*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 736*K1*K2**2*K3 - 160*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3488*K1*K2*K3 + 240*K1*K3*K4 - 768*K2**6 + 1152*K2**4*K4 - 4128*K2**4 - 192*K2**3*K6 - 448*K2**2*K3**2 - 392*K2**2*K4**2 + 3008*K2**2*K4 - 134*K2**2 + 104*K2*K3*K5 + 64*K2*K4*K6 - 808*K3**2 - 492*K4**2 - 2*K6**2 + 1882
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact