Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,1,1,2,1,3,1,1,1,2,-1,1,0,2,2,-2] |
Flat knots (up to 7 crossings) with same phi are :['6.839'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.552', '6.652', '6.764', '6.776', '6.784', '6.839', '6.903', '6.1010', '6.1166'] |
Outer characteristic polynomial of the knot is: t^7+55t^5+58t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.839'] |
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 64*K1**4*K2 - 96*K1**4 + 128*K1**3*K2*K3 - 96*K1**3*K3 - 384*K1**2*K2**4 + 992*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 3232*K1**2*K2**2 - 96*K1**2*K2*K4 + 2672*K1**2*K2 - 112*K1**2*K3**2 - 1944*K1**2 + 1184*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 + 64*K1*K2*K3**3 - 64*K1*K2*K3*K4 + 3080*K1*K2*K3 + 184*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1472*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 24*K2**2*K4**2 + 912*K2**2*K4 - 764*K2**2 - 32*K2*K3**2*K4 + 192*K2*K3*K5 + 24*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 808*K3**2 - 116*K4**2 - 24*K5**2 - 4*K6**2 + 1442 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.839'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.70460', 'vk6.70475', 'vk6.70525', 'vk6.70600', 'vk6.70630', 'vk6.70655', 'vk6.70756', 'vk6.70842', 'vk6.70915', 'vk6.70943', 'vk6.71002', 'vk6.71105', 'vk6.71154', 'vk6.71169', 'vk6.71239', 'vk6.71298', 'vk6.71323', 'vk6.71338', 'vk6.73545', 'vk6.74217', 'vk6.74357', 'vk6.75006', 'vk6.75302', 'vk6.76414', 'vk6.76579', 'vk6.76641', 'vk6.76984', 'vk6.78286', 'vk6.79265', 'vk6.79397', 'vk6.79935', 'vk6.80754', 'vk6.81509', 'vk6.83986', 'vk6.86361', 'vk6.86871', 'vk6.87279', 'vk6.88073', 'vk6.88236', 'vk6.88244'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U2O5O6U4U5U6U3 |
R3 orbit | {'O1O2O3O4U1U2O5U3O6U5U4U6', 'O1O2O3O4U1U2O5O6U4U5U6U3'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4U2U5U6U1O5O6U3U4 |
Gauss code of K* | O1O2O3O4U5U6U4U1O5O6U2U3 |
Gauss code of -K* | O1O2O3O4U2U3O5O6U4U1U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 2 0 0 2],[ 3 0 1 3 2 1 1],[ 1 -1 0 2 1 1 1],[-2 -3 -2 0 -2 0 2],[ 0 -2 -1 2 0 1 2],[ 0 -1 -1 0 -1 0 1],[-2 -1 -1 -2 -2 -1 0]] |
Primitive based matrix | [[ 0 2 2 0 0 -1 -3],[-2 0 2 0 -2 -2 -3],[-2 -2 0 -1 -2 -1 -1],[ 0 0 1 0 -1 -1 -1],[ 0 2 2 1 0 -1 -2],[ 1 2 1 1 1 0 -1],[ 3 3 1 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,0,1,3,-2,0,2,2,3,1,2,1,1,1,1,1,1,2,1] |
Phi over symmetry | [-3,-1,0,0,2,2,1,1,2,1,3,1,1,1,2,-1,1,0,2,2,-2] |
Phi of -K | [-3,-1,0,0,2,2,1,1,2,2,4,0,0,1,2,-1,0,0,2,1,-2] |
Phi of K* | [-2,-2,0,0,1,3,-2,0,1,2,4,0,2,1,2,1,0,1,0,2,1] |
Phi of -K* | [-3,-1,0,0,2,2,1,1,2,1,3,1,1,1,2,-1,1,0,2,2,-2] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+18z+17 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+18w^2z+17w |
Inner characteristic polynomial | t^6+37t^4+8t^2 |
Outer characteristic polynomial | t^7+55t^5+58t^3+3t |
Flat arrow polynomial | 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | -64*K1**4*K2**2 + 64*K1**4*K2 - 96*K1**4 + 128*K1**3*K2*K3 - 96*K1**3*K3 - 384*K1**2*K2**4 + 992*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 3232*K1**2*K2**2 - 96*K1**2*K2*K4 + 2672*K1**2*K2 - 112*K1**2*K3**2 - 1944*K1**2 + 1184*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 + 64*K1*K2*K3**3 - 64*K1*K2*K3*K4 + 3080*K1*K2*K3 + 184*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1472*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 24*K2**2*K4**2 + 912*K2**2*K4 - 764*K2**2 - 32*K2*K3**2*K4 + 192*K2*K3*K5 + 24*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 808*K3**2 - 116*K4**2 - 24*K5**2 - 4*K6**2 + 1442 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice | False |