Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.840

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,3,3,2,0,1,1,1,-1,0,0,0,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.840']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+50t^5+53t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.840']
2-strand cable arrow polynomial of the knot is: -1024*K1**2*K2**4 + 2784*K1**2*K2**3 - 5056*K1**2*K2**2 - 800*K1**2*K2*K4 + 3216*K1**2*K2 - 2552*K1**2 + 1600*K1*K2**3*K3 - 640*K1*K2**2*K3 - 416*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 3656*K1*K2*K3 + 384*K1*K3*K4 + 184*K1*K4*K5 - 128*K2**6 + 192*K2**4*K4 - 2296*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 72*K2**2*K4**2 + 1584*K2**2*K4 - 798*K2**2 + 568*K2*K3*K5 + 24*K2*K4*K6 - 872*K3**2 - 418*K4**2 - 200*K5**2 - 2*K6**2 + 1944
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.840']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17024', 'vk6.17265', 'vk6.20568', 'vk6.21975', 'vk6.23447', 'vk6.23744', 'vk6.28032', 'vk6.29490', 'vk6.35523', 'vk6.35969', 'vk6.39435', 'vk6.41633', 'vk6.42939', 'vk6.43232', 'vk6.46021', 'vk6.47689', 'vk6.55206', 'vk6.55440', 'vk6.57439', 'vk6.58609', 'vk6.59601', 'vk6.59920', 'vk6.62113', 'vk6.63082', 'vk6.65011', 'vk6.65215', 'vk6.66972', 'vk6.67834', 'vk6.68286', 'vk6.68437', 'vk6.69588', 'vk6.70281']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U2O5O6U4U6U5U3
R3 orbit {'O1O2O3O4U1U2O5O6U4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U6U1O6O5U3U4
Gauss code of K* O1O2O3O4U5U6U4U1O5O6U3U2
Gauss code of -K* O1O2O3O4U3U2O5O6U4U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 0 1 1],[ 3 0 1 3 2 1 1],[ 1 -1 0 2 1 1 1],[-2 -3 -2 0 -2 1 1],[ 0 -2 -1 2 0 2 1],[-1 -1 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 1 1 -2 -2 -3],[-1 -1 0 0 -1 -1 -1],[-1 -1 0 0 -2 -1 -1],[ 0 2 1 2 0 -1 -2],[ 1 2 1 1 1 0 -1],[ 3 3 1 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,-1,-1,2,2,3,0,1,1,1,2,1,1,1,2,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,3,3,2,0,1,1,1,-1,0,0,0,2,2]
Phi of -K [-3,-1,0,1,1,2,1,1,3,3,2,0,1,1,1,-1,0,0,0,2,2]
Phi of K* [-2,-1,-1,0,1,3,2,2,0,1,2,0,-1,1,3,0,1,3,0,1,1]
Phi of -K* [-3,-1,0,1,1,2,1,2,1,1,3,1,1,1,2,1,2,2,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w
Inner characteristic polynomial t^6+34t^4+12t^2
Outer characteristic polynomial t^7+50t^5+53t^3+7t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -1024*K1**2*K2**4 + 2784*K1**2*K2**3 - 5056*K1**2*K2**2 - 800*K1**2*K2*K4 + 3216*K1**2*K2 - 2552*K1**2 + 1600*K1*K2**3*K3 - 640*K1*K2**2*K3 - 416*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 3656*K1*K2*K3 + 384*K1*K3*K4 + 184*K1*K4*K5 - 128*K2**6 + 192*K2**4*K4 - 2296*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 72*K2**2*K4**2 + 1584*K2**2*K4 - 798*K2**2 + 568*K2*K3*K5 + 24*K2*K4*K6 - 872*K3**2 - 418*K4**2 - 200*K5**2 - 2*K6**2 + 1944
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact