Gauss code |
O1O2O3O4U1U2O5O6U5U3U4U6 |
R3 orbit |
{'O1O2O3O4U1U2O5O6U5U3U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U1U2U6O5O6U3U4 |
Gauss code of K* |
O1O2O3O4U5U6U2U3O5O6U1U4 |
Gauss code of -K* |
O1O2O3O4U1U4O5O6U2U3U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 2 -1 3],[ 3 0 1 2 3 0 2],[ 1 -1 0 1 2 0 2],[ 0 -2 -1 0 1 0 3],[-2 -3 -2 -1 0 0 2],[ 1 0 0 0 0 0 1],[-3 -2 -2 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 -1 -1 -3],[-3 0 -2 -3 -1 -2 -2],[-2 2 0 -1 0 -2 -3],[ 0 3 1 0 0 -1 -2],[ 1 1 0 0 0 0 0],[ 1 2 2 1 0 0 -1],[ 3 2 3 2 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,1,1,3,2,3,1,2,2,1,0,2,3,0,1,2,0,0,1] |
Phi over symmetry |
[-3,-2,0,1,1,3,-1,0,2,3,4,1,1,3,2,0,1,1,0,1,2] |
Phi of -K |
[-3,-1,-1,0,2,3,1,2,1,2,4,0,0,1,2,1,3,3,1,0,-1] |
Phi of K* |
[-3,-2,0,1,1,3,-1,0,2,3,4,1,1,3,2,0,1,1,0,1,2] |
Phi of -K* |
[-3,-1,-1,0,2,3,0,1,2,3,2,0,0,0,1,1,2,2,1,3,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w |
Inner characteristic polynomial |
t^6+42t^4+34t^2 |
Outer characteristic polynomial |
t^7+66t^5+105t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 4*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-656*K1**4 - 32*K1**3*K3 - 768*K1**2*K2**6 + 896*K1**2*K2**5 - 2624*K1**2*K2**4 + 3744*K1**2*K2**3 - 7888*K1**2*K2**2 - 352*K1**2*K2*K4 + 6464*K1**2*K2 - 48*K1**2*K3**2 - 32*K1**2*K4**2 - 4228*K1**2 + 1152*K1*K2**5*K3 - 640*K1*K2**4*K3 - 128*K1*K2**4*K5 + 3296*K1*K2**3*K3 + 320*K1*K2**2*K3*K4 - 1600*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 576*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5760*K1*K2*K3 + 520*K1*K3*K4 + 120*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1088*K2**6 - 448*K2**4*K3**2 - 192*K2**4*K4**2 + 1056*K2**4*K4 - 3440*K2**4 + 160*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1248*K2**2*K3**2 - 560*K2**2*K4**2 + 2360*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 1044*K2**2 - 32*K2*K3**2*K4 + 448*K2*K3*K5 + 104*K2*K4*K6 - 1348*K3**2 - 450*K4**2 - 72*K5**2 - 4*K6**2 + 3136 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |